We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can be interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the limit of the corresponding family of stationary measures on P 1 (C).
In an algebraic family of rational maps of $mathbb{P}^1$, we show that, for almost every parameter for the trace of the bifurcation current of a marked critical value, the critical value is Collet-Eckmann. This extends previous results of Graczyk and {S}wic{a}tek in the unicritical family, using Makarov theorem. Our methods are based instead on ideas of laminar currents theory.
We construct a Teichmueller curve uniformized by the Fuchsian triangle group (m,n,infty) for every m<n. Our construction includes the Teichmueller curves constructed by Veech and Ward as special cases. The construction essentially relies on properties of hypergeometric differential operators. For small m, we find Billiard tables that generate these Teichmueller curves. We interprete some of the so-called Lyapunov exponents of the Kontsevich--Zorich cocycle as normalized degrees of some natural line bundles on a Teichmueller curves. We determine the Lyapunov exponents for the Teichmueller curves we construct.
We prove some ergodic-theoretic rigidity properties of the action of SL(2,R) on moduli space. In particular, we show that any ergodic measure invariant under the action of the upper triangular subgroup of SL(2,R) is supported on an invariant affine submanifold. The main theorems are inspired by the results of several authors on unipotent flows on homogeneous spaces, and in particular by Ratners seminal work.
We prove results about orbit closures and equidistribution for the SL(2,R) action on the moduli space of compact Riemann surfaces, which are analogous to the theory of unipotent flows. The proofs of the main theorems rely on the measure classification theorem of [EMi2] and a certain isolation property of closed SL(2,R) invariant manifolds developed in this paper.
The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the associated Kaplan-Yorke dimension provides new insights into the chaotic dynamics of the Kuramoto-Sivashinsky PDE, and the transition to its 1D turbulence.