Do you want to publish a course? Click here

Parametric Lyapunov exponents

256   0   0.0 ( 0 )
 Added by Gabriel Vigny
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In an algebraic family of rational maps of $mathbb{P}^1$, we show that, for almost every parameter for the trace of the bifurcation current of a marked critical value, the critical value is Collet-Eckmann. This extends previous results of Graczyk and {S}wic{a}tek in the unicritical family, using Makarov theorem. Our methods are based instead on ideas of laminar currents theory.



rate research

Read More

The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the associated Kaplan-Yorke dimension provides new insights into the chaotic dynamics of the Kuramoto-Sivashinsky PDE, and the transition to its 1D turbulence.
We introduce the notion of Lyapunov exponents for random dynamical systems, conditioned to trajectories that stay within a bounded domain for asymptotically long times. This is motivated by the desire to characterize local dynamical properties in the presence of unbounded noise (when almost all trajectories are unbounded). We illustrate its use in the analysis of local bifurcations in this context. The theory of conditioned Lyapunov exponents of stochastic differential equations builds on the stochastic analysis of quasi-stationary distributions for killed processes and associated quasi-ergodic distributions. We show that conditioned Lyapunov exponents describe the local stability behaviour of trajectories that remain within a bounded domain and - in particular - that negative conditioned Lyapunov exponents imply local synchronisation. Furthermore, a conditioned dichotomy spectrum is introduced and its main characteristics are established.
Two different types of perturbations of the Lorenz 63 dynamical system for Rayleigh-Benard convection by multiplicative noise -- called stochastic advection by Lie transport (SALT) noise and fluctuation-dissipation (FD) noise -- are found to produce qualitatively different effects, possibly because the total phase-space volume contraction rates are different. In the process of making this comparison between effects of SALT and FD noise on the Lorenz 63 system, a stochastic version of a robust deterministic numerical algorithm for obtaining the individual numerical Lyapunov exponents was developed. With this stochastic version of the algorithm, the value of the sum of the Lyapunov exponents for the FD noise was found to differ significantly from the value of the deterministic Lorenz 63 system, whereas the SALT noise preserves the Lorenz 63 value with high accuracy. The Lagrangian averaged version of the SALT equations (LA SALT) is found to yield a closed deterministic subsystem for the expected solutions which is found to be isomorphic to the original Lorenz 63 dynamical system. The solutions of the closed chaotic subsystem, in turn, drive a linear stochastic system for the fluctuations of the LA SALT solutions around their expected values.
98 - Romain Dujardin 2018
We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can be interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the limit of the corresponding family of stationary measures on P 1 (C).
59 - Mauricio Poletti 2017
We prove that in an open and dense set, Symplectic linear cocycles over time one maps of Anosov flows, have positive Lyapunov exponents for SRB measures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا