Do you want to publish a course? Click here

Black holes in quartic-order beyond-generalized Proca theories

74   0   0.0 ( 0 )
 Added by Shinji Tsujikawa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The generalized Proca theories with second-order equations of motion can be healthily extended to a more general framework in which the number of propagating degrees of freedom remains unchanged. In the presence of a quartic-order nonminimal coupling to gravity arising in beyond-generalized Proca theories, the speed of gravitational waves $c_t$ on the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological background can be equal to that of light $c$ under a certain condition. By using this condition alone, we show that the speed of gravitational waves in the vicinity of static and spherically symmetric black holes is also equivalent to $c$ for the propagation of odd-parity perturbations along both radial and angular directions. As a by-product, the black holes arising in our beyond-generalized Proca theories are plagued by neither ghost nor Laplacian instabilities against odd-parity perturbations. We show the existence of both exact and numerical black hole solutions endowed with vector hairs induced by the quartic-order coupling.



rate research

Read More

The beyond-generalized Proca theories are the extension of second-order massive vector-tensor theories (dubbed generalized Proca theories) with two transverse vector modes and one longitudinal scalar besides two tensor polarizations. Even with this extension, the propagating degrees of freedom remain unchanged on the isotropic cosmological background without an Ostrogradski instability. We study the cosmology in beyond-generalized Proca theories by paying particular attention to the dynamics of late-time cosmic acceleration and resulting observational consequences. We derive conditions for avoiding ghosts and instabilities of tensor, vector, and scalar perturbations and discuss viable parameter spaces in concrete models allowing the dark energy equation of state smaller than $-1$. The propagation speeds of those perturbations are subject to modifications beyond the domain of generalized Proca theories. There is a mixing between scalar and matter sound speeds, but such a mixing is suppressed during most of the cosmic expansion history without causing a new instability. On the other hand, we find that derivative interactions arising in beyond-generalized Proca theories give rise to important modifications to the cosmic growth history. The growth rate of matter perturbations can be compatible with the redshift-space distortion data due to the realization of gravitational interaction weaker than that in generalized Proca theories. Thus, it is possible to distinguish the dark energy model in beyond-generalized Proca theories from the counterpart in generalized Proca theories as well as from the $Lambda$CDM model.
We derive the profile of a vector field coupled to matter on a static and spherically symmetric background in the context of generalized Proca theories. The cubic Galileon self-interaction leads to the suppression of a longitudinal vector component due to the operation of the Vainshtein mechanism. For quartic and sixth-order derivative interactions, the solutions consistent with those in the continuous limit of small derivative couplings correspond to the branch with the vanishing longitudinal mode. We compute the corrections to gravitational potentials outside a compact body induced by the vector field in the presence of cubic, quartic, and sixth-order derivative couplings, and show that the models can be consistent with local gravity constraints under mild bounds on the temporal vector component. The quintic Galileon interaction does not allow regular solutions of the longitudinal mode for a rapidly decreasing matter density outside the body.
81 - Enrico Barausse 2019
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evolution of black hole binary systems, providing a qualitative physical interpretation of each one of them. I will also briefly describe how these phases would be modified if gravitation were described by a theory extending or deforming General Relativity, or if the binary components turned out to be more exotic compact objects than black holes.
We explore how far one can go in constructing $d$-dimensional static black holes coupled to $p$-form and scalar fields before actually specifying the gravity and electrodynamics theory one wants to solve. At the same time, we study to what extent one can enlarge the space of black hole solutions by allowing for horizon geometries more general than spaces of constant curvature. We prove that a generalized Schwarzschild-like ansatz with an arbitrary isotropy-irreducible homogeneous base space (IHS) provides an answer to both questions, up to naturally adapting the gauge fields to the spacetime geometry. In particular, an IHS-Kahler base space enables one to construct magnetic and dyonic 2-form solutions in a large class of theories, including non-minimally couplings. We exemplify our results by constructing simple solutions to particular theories such as $R^2$, Gauss-Bonnet and (a sector of) Einstein-Horndeski gravity coupled to certain $p$-form and conformally invariant electrodynamics.
In scalar-vector-tensor theories with $U(1)$ gauge invariance, it was recently shown that there exists a new type of hairy black hole (BH) solutions induced by a cubic-order scalar-vector interaction. In this paper, we derive conditions for the absence of ghosts and Laplacian instabilities against odd-parity perturbations on a static and spherically symmetric background for most general $U(1)$ gauge-invariant scalar-vector-tensor theories with second-order equations of motion. We apply those conditions to hairy BH solutions arising from the cubic-order coupling and show that the odd-parity stability in the gravity sector is always ensured outside the event horizon with the speed of gravity equivalent to that of light. We also study the case in which quartic-order interactions are present in addition to the cubic coupling and obtain conditions under which black holes are stable against odd-parity perturbations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا