Do you want to publish a course? Click here

Suppression of matter couplings with a vector field in generalized Proca theories

131   0   0.0 ( 0 )
 Added by Shintaro Nakamura
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the profile of a vector field coupled to matter on a static and spherically symmetric background in the context of generalized Proca theories. The cubic Galileon self-interaction leads to the suppression of a longitudinal vector component due to the operation of the Vainshtein mechanism. For quartic and sixth-order derivative interactions, the solutions consistent with those in the continuous limit of small derivative couplings correspond to the branch with the vanishing longitudinal mode. We compute the corrections to gravitational potentials outside a compact body induced by the vector field in the presence of cubic, quartic, and sixth-order derivative couplings, and show that the models can be consistent with local gravity constraints under mild bounds on the temporal vector component. The quintic Galileon interaction does not allow regular solutions of the longitudinal mode for a rapidly decreasing matter density outside the body.



rate research

Read More

The beyond-generalized Proca theories are the extension of second-order massive vector-tensor theories (dubbed generalized Proca theories) with two transverse vector modes and one longitudinal scalar besides two tensor polarizations. Even with this extension, the propagating degrees of freedom remain unchanged on the isotropic cosmological background without an Ostrogradski instability. We study the cosmology in beyond-generalized Proca theories by paying particular attention to the dynamics of late-time cosmic acceleration and resulting observational consequences. We derive conditions for avoiding ghosts and instabilities of tensor, vector, and scalar perturbations and discuss viable parameter spaces in concrete models allowing the dark energy equation of state smaller than $-1$. The propagation speeds of those perturbations are subject to modifications beyond the domain of generalized Proca theories. There is a mixing between scalar and matter sound speeds, but such a mixing is suppressed during most of the cosmic expansion history without causing a new instability. On the other hand, we find that derivative interactions arising in beyond-generalized Proca theories give rise to important modifications to the cosmic growth history. The growth rate of matter perturbations can be compatible with the redshift-space distortion data due to the realization of gravitational interaction weaker than that in generalized Proca theories. Thus, it is possible to distinguish the dark energy model in beyond-generalized Proca theories from the counterpart in generalized Proca theories as well as from the $Lambda$CDM model.
The generalized Proca theories with second-order equations of motion can be healthily extended to a more general framework in which the number of propagating degrees of freedom remains unchanged. In the presence of a quartic-order nonminimal coupling to gravity arising in beyond-generalized Proca theories, the speed of gravitational waves $c_t$ on the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological background can be equal to that of light $c$ under a certain condition. By using this condition alone, we show that the speed of gravitational waves in the vicinity of static and spherically symmetric black holes is also equivalent to $c$ for the propagation of odd-parity perturbations along both radial and angular directions. As a by-product, the black holes arising in our beyond-generalized Proca theories are plagued by neither ghost nor Laplacian instabilities against odd-parity perturbations. We show the existence of both exact and numerical black hole solutions endowed with vector hairs induced by the quartic-order coupling.
We revisit the most general theory for a massive vector field with derivative self-interactions, extending previous works on the subject to account for terms having trivial total derivative interactions for the longitudinal mode. In the flat spacetime (Minkowski) case, we obtain all the possible terms containing products of up to five first-order derivatives of the vector field, and provide a conjecture about higher-order terms. Rendering the metric dynamical, we covariantize the results and add all possible terms implying curvature.
We propose a new class of gravity theories which are characterized by a nontrivial coupling between the gravitational metric and matter mediated by an auxiliary rank-2 tensor. The actions generating the field equations are constructed so that these theories are equivalent to general relativity in a vacuum, and only differ from general relativity theory within a matter distribution. We analyze in detail one of the simplest realizations of these generalized coupling theories. We show that in this case the propagation speed of gravitational radiation in matter is different from its value in vacuum and that this can be used to weakly constrain the (single) additional parameter of the theory. An analysis of the evolution of homogeneous and isotropic spacetimes in the same framework shows that there exist cosmic histories with both an inflationary phase and a dark era characterized by a different expansion rate.
We study a new class of vector dark energy models where multi-Proca fields $A_mu^a$ are coupled to cold dark matter by the term $f(X)tilde{mathcal{L}}_{m}$ where $f(X)$ is a general function of $Xequiv -frac{1}{2}A^mu_ a A^a_mu$ and $tilde{mathcal{L}}_{m}$ is the cold dark matter Lagrangian. From here, we derive the general covariant form of the novel interaction term sourcing the field equations. This result is quite general in the sense that encompasses Abelian and non-Abelian vector fields. In particular, we investigate the effects of this type of coupling in a simple dark energy model based on three copies of canonical Maxwell fields to realize isotropic expansion. The cosmological background dynamics of the model is examined by means of a dynamical system analysis to determine the stability of the emergent cosmological solutions. As an interesting result, we find that the coupling function leads to the existence of a novel scaling solution during the dark matter dominance. Furthermore, the critical points show an early contribution of the vector field in the form of dark radiation and a stable de Sitter-type attractor at late times mimicking dark energy. The cosmological evolution of the system as well as the aforementioned features are verified by numerical computations. Observational constraints are also discussed to put the model in a more phenomenological context in the light of future observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا