Do you want to publish a course? Click here

Improper Ferroelectric Polarisation in a Perovskite driven by Inter-site Charge Transfer and Ordering

110   0   0.0 ( 0 )
 Added by Mark Stephen Senn
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is of great interest to design and make materials in which ferroelectric polarisation is coupled to other order parameters such as lattice, magnetic and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realised. Here we report detailed crystallographic studies of a novel perovskite Hg$^{textbf{A}}$Mn$^{textbf{A}}_{3}$Mn$^{textbf{B}}_{4}$O$_{12}$ that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A and B-sites, which are themselves driven by a highly unusual Mn$^{A}$-Mn$^B$ inter-site charge transfer. The inherent coupling of polar, charge, orbital and hence magnetic degrees of freedom, make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.



rate research

Read More

134 - H.X. Yang , H.F. Tian , Y. Zhang 2009
The transmission electron microscopy observations of the charge ordering (CO) which governs the electronic polarization in LuFe2O4-x clearly show the presence of a remarkable phase separation at low temperatures. Two CO ground states are found to adopt the charge modulations of Q1 = (1/3, 1/3, 0) and Q2 = (1/3 + y, 1/3 + y, 3/2), respectively. Our structural study demonstrates that the incommensurately Q2-modulated state is chiefly stable in samples with relatively lower oxygen contents. Data from theoretical simulations of the diffraction suggest that both Q1- and Q2-modulated phases have ferroelectric ordering. The effects of oxygen concentration on the phase separation and electric polarization in this layered system are discussed.
Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena such as insulator-metal transitions, magnetism, magnetoresistance, and superconductivity. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high quality, epitaxial interfaces with almost monolayer control of atomic positions. The resulting interfaces, however, are fixed in space by the arrangement of the atoms. Here we demonstrate a route to overcoming this geometric limitation. We show that the electrical conductance at the interfacial ferroelectric domain walls in hexagonal ErMnO3 is a continuous function of the domain wall orientation, with a range of an order of magnitude. We explain the observed behaviour using first-principles density functional and phenomenological theories, and relate it to the unexpected stability of head-to-head and tail-to-tail domain walls in ErMnO3 and related hexagonal manganites. Since the domain wall orientation in ferroelectrics is tunable using modest external electric fields, our finding opens a degree of freedom that is not accessible to spatially fixed interfaces.
495 - Aga Shahee , N. P. Lalla 2015
Low as well as high-temperature electron and x-ray diffraction studies have been carried out on a rare-earth free B-site disordered electron-doped manganite SrMn0.875.Mo0.125O3-{delta} in the temperature range of 83K to 637K. These studies reveal the occurrence of strong charge ordering (CO) at room temperature in a pseudo tetragonally distorted perovskite phase with space-group Pmmm. Non integral modulation vector of 8.95 times along [-110] indicates a charge density wave type modulation. The CO phase with basic perovskite structure Pmmm transforms to a charge disorder cubic phase through a first order phase transition at 355K. Supporting temperature dependent measurements of resistance and magnetization show a metal-insulator and antiferromagnetic transitions across 355K with a wide hysterisis ranging from 150K to 365K. The occurrence of pseudo tetragonality of the basic perovskite lattice with c/a < 1 together with charge-ordered regions with 2-dimensional modulation have been analyzed as the coexistence of two CO phases with 3dx2/3dy2 type and 3dx2-y2 type orbital ordering.
Magnetic structures and the relationship between spin and charge-orbital orderings of an A-site ordered double-perovskite manganite SmBaMn2O6, an anticipated multiferroic material, were investigated by means of neutron diffraction. The spin arrangement in MnO2 planes perpendicular to the c axis is revealed to be the same as that in the A-site disordered half-doped manganites CE-type but the stacking pattern is found to be different displaying a unique twofold period. The temperature dependence of the superlattice magnetic and nuclear reflections clarifies that the antiferromagnetic spin ordering occurs at a temperature slightly lower than the temperature at which a rearrangement of the charge-orbital orderings occurs. The result evidences that the rearrangement leads the spin ordering. The intensities of the magnetic reflections are found to change across Tf = 10 K, suggesting a spin-flop by 90 [deg.] while keeping the Mn spin ordering pattern unchanged.
61 - T. Mizokawa , D. I. Khomskii , 1999
We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degenerate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا