Do you want to publish a course? Click here

Phase separation and ferroelectric ordering in charge frustrated LuFe2O4-x

128   0   0.0 ( 0 )
 Added by Honglong Shi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transmission electron microscopy observations of the charge ordering (CO) which governs the electronic polarization in LuFe2O4-x clearly show the presence of a remarkable phase separation at low temperatures. Two CO ground states are found to adopt the charge modulations of Q1 = (1/3, 1/3, 0) and Q2 = (1/3 + y, 1/3 + y, 3/2), respectively. Our structural study demonstrates that the incommensurately Q2-modulated state is chiefly stable in samples with relatively lower oxygen contents. Data from theoretical simulations of the diffraction suggest that both Q1- and Q2-modulated phases have ferroelectric ordering. The effects of oxygen concentration on the phase separation and electric polarization in this layered system are discussed.



rate research

Read More

138 - K. Yoshimi , H. Maebashi 2010
On the basis of an analysis of a 3/4-filled two-dimensional (2D) extended Hubbard model under the fluctuation-exchange approximation, we find Coulomb frustrated phase separation (PS) in a region of nonzero temperature, where the quantum critical phenomenon of charge ordering (CO) dominates. In quasi-2D organic conductors on the verge of CO, this frustrated PS provides a mechanism for generating spatial inhomogeneity, which is characterized by an extremely slow relaxation and an intermediate length scale.
It is of great interest to design and make materials in which ferroelectric polarisation is coupled to other order parameters such as lattice, magnetic and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realised. Here we report detailed crystallographic studies of a novel perovskite Hg$^{textbf{A}}$Mn$^{textbf{A}}_{3}$Mn$^{textbf{B}}_{4}$O$_{12}$ that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A and B-sites, which are themselves driven by a highly unusual Mn$^{A}$-Mn$^B$ inter-site charge transfer. The inherent coupling of polar, charge, orbital and hence magnetic degrees of freedom, make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.
X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe/O double-layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3,1/3,0) propagation, indicates ferroelectric short-range correlations between neighboring double-layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.
80 - K.-W. Lee , J. Kunes , 2004
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) allowing only ferromagnetic order, there is a critical U_c = 3 eV, above which charge disproportionation occurs for both x=1/3 and x=2/3, (2) allowing antiferromagnetic order at x=1/3, U_c drops to 1 eV for disproportionation, (3) disproportionation and gap opening occur simultaneously, (4) in a Co(3+)-Co(4+) ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below U_c ferromagnetism is favored. Comparison of the calculated Fermi level density of states compared to reported linear specific heat coefficients indicates enhancement of the order of five for x~0.7, but negligible enhancement for x~0.3. This trend is consistent with strong magnetic behavior and local moments (Curie-Weiss susceptibility) for x>0.5 while there no magnetic behavior or local moments reported for x<0.5. We suggest that the phase diagram is characterized by a crossover from effective single-band character with U >> W for x>0.5 into a three-band regime for x<0.5, where U --> U_eff <= U/sqrt(3) ~ W and correlation effects are substantially reduced.
We consider the superexchange in `frustrated Jahn-Teller systems, such as the transition metal oxides NaNiO_2, LiNiO_2, and ZnMn_2O_4, in which transition metal ions with doubly degenerate orbitals form a triangular or pyrochlore lattice and are connected by the 90-degree metal-oxygen-metal bonds. We show that this interaction is much different from a more familiar exchange in systems with the 180-degree bonds, e.g. perovskites. In contrast to the strong interplay between the orbital and spin degrees of freedom in perovskites, in the 90-degree exchange systems spins and orbitals are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all orbital states. Due to frustration, the mean-field orbital ground state is strongly degenerate. Quantum orbital fluctuations select particular ferro-orbital states, such as the one observed in NaNiO_2. We also discuss why LiNiO_2 may still behave as an orbital liquid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا