Do you want to publish a course? Click here

Anisotropic conductance at improper ferroelectric domain walls

131   0   0.0 ( 0 )
 Added by Dennis Meier
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena such as insulator-metal transitions, magnetism, magnetoresistance, and superconductivity. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high quality, epitaxial interfaces with almost monolayer control of atomic positions. The resulting interfaces, however, are fixed in space by the arrangement of the atoms. Here we demonstrate a route to overcoming this geometric limitation. We show that the electrical conductance at the interfacial ferroelectric domain walls in hexagonal ErMnO3 is a continuous function of the domain wall orientation, with a range of an order of magnitude. We explain the observed behaviour using first-principles density functional and phenomenological theories, and relate it to the unexpected stability of head-to-head and tail-to-tail domain walls in ErMnO3 and related hexagonal manganites. Since the domain wall orientation in ferroelectrics is tunable using modest external electric fields, our finding opens a degree of freedom that is not accessible to spatially fixed interfaces.



rate research

Read More

Ferroelectric domain walls are attracting broad attention as atomic-scale switches, diodes and mobile wires for next-generation nanoelectronics. Charged domain walls in improper ferroelectrics are particularly interesting as they offer multifunctional properties and an inherent stability not found in proper ferroelectrics. Here we study the energetics and structure of charged walls in improper ferroelectric YMnO$_3$, InMnO$_3$ and YGaO$_3$ by first principles calculations and phenomenological modeling. Positively and negatively charged walls are asymmetric in terms of local structure and width, reflecting that polarization is not the driving force for domain formation. The wall width scales with the amplitude of the primary structural order parameter and the coupling strength to the polarization. We introduce general rules for how to engineer $n$- and $p$-type domain wall conductivity based on the domain size, polarization and electronic band gap. This opens the possibility of fine-tuning the local transport properties and design $p$-$n$-junctions for domain wall-based nano-circuitry.
We report the dielectric properties of improper ferroelectric h-ErMnO$_3$. From the bulk characterisation we observe a temperature and frequency range with two distinct relaxation-like features, leading to high and even colossal values for the dielectric permittivity. One feature trivially originates from the formation of a Schottky barrier at the electrode-sample interface, whereas the second one relates to an internal barrier layer capacitance (BLC). The calculated volume fraction of the internal BLC (of 8 %) is in good agreement with the observed volume fraction of insulating domain walls (DWs). While it is established that insulating DWs can give rise to high dielectric constants, studies typically focused on proper ferroelectrics where electric fields can remove the DWs. In h-ErMnO$_3$, by contrast, the insulating DWs are topologically protected, facilitating operation under substantially higher electric fields. Our findings provide the basis for a conceptually new approach to engineer materials exhibiting colossal dielectric permittivities using domain walls in improper ferroelecctrics with potential applications in electroceramic capacitors.
It is of great interest to design and make materials in which ferroelectric polarisation is coupled to other order parameters such as lattice, magnetic and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realised. Here we report detailed crystallographic studies of a novel perovskite Hg$^{textbf{A}}$Mn$^{textbf{A}}_{3}$Mn$^{textbf{B}}_{4}$O$_{12}$ that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A and B-sites, which are themselves driven by a highly unusual Mn$^{A}$-Mn$^B$ inter-site charge transfer. The inherent coupling of polar, charge, orbital and hence magnetic degrees of freedom, make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.
Phase-field simulations demonstrate that the polarization order-parameter field in the Ginzburg-Landau-Devonshire model of rhombohedral ferroelectric BaTiO3 allows for an interesting linear defect, stable under simple periodic boundary conditions. This linear defect, termed here as Ising line, can be described as about 2 nm thick intrinsic paraelectric nanorod acting as a highly mobile borderline between finite portions of Bloch-like domain walls of the opposite helicity. These Ising lines play the role of domain boundaries associated with the Ising-to-Bloch domain wall phase transition.
Ferroelectric domain walls represent multifunctional 2D-elements with great potential for novel device paradigms at the nanoscale. Improper ferroelectrics display particularly promising types of domain walls, which, due to their unique robustness, are the ideal template for imposing specific electronic behavior. Chemical doping, for instance, induces p- or n-type characteristics and electric fields reversibly switch between resistive and conductive domain-wall states. Here, we demonstrate diode-like conversion of alternating-current (AC) into direct-current (DC) output based on neutral 180$^{circ}$ domain walls in improper ferroelectric ErMnO$_3$. By combining scanning probe and dielectric spectroscopy, we show that the rectification occurs for frequencies at which the domain walls are fixed to their equilibrium position. The practical frequency regime and magnitude of the output is controlled by the bulk conductivity. Using density functional theory we attribute the transport behavior at the neutral walls to an accumulation of oxygen defects. Our study reveals domain walls acting as 2D half-wave rectifiers, extending domain-wall-based nanoelectronic applications into the realm of AC technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا