No Arabic abstract
The Quantum Spectral Curve (QSC) equations for planar $mathcal{N}=6$ super-conformal Chern-Simons (SCS) are solved numerically at finite values of the coupling constant for states in the $mathfrak{sl}(2|1)$ sector. New weak coupling results for conformal dimensions of operators outside the $mathfrak{sl}(2)$-like sector are obtained by adapting a recently proposed algorithm for the QSC perturbative solution. Besides being interesting in their own right, these perturbative results are necessary initial inputs for the numerical algorithm to converge on the correct solution. The non-perturbative numerical outcomes nicely interpolate between the weak coupling and the known semiclassical expansions, and novel strong coupling exact results are deduced from the numerics. Finally, the existence of contour crossing singularities in the TBA equations for the operator $textbf{20}$ is ruled out by our analysis. The results of this paper are an important test of the QSC formalism for this model, open the way to new quantitative studies and provide further evidence in favour of the conjectured weak/strong coupling duality between $mathcal{N}=6$ SCS and type IIA superstring theory on $AdS_4 times CP^3$. Attached to the arXiv submission, a Mathematica implementation of the numerical method and ancillary files containing the numerical results are provided.
We construct three-dimensional N=2 Chern-Simons-quiver theories which are holographically dual to the M-theory Freund-Rubin solutions AdS_4 x V_{5,2}/Z_k (with or without torsion G-flux), where V_{5,2} is a homogeneous Sasaki-Einstein seven-manifold. The global symmetry group of these theories is generically SU(2) x U(1) x U(1)_R, and they are hence non-toric. The field theories may be thought of as the n=2 member of a family of models, labelled by a positive integer n, arising on multiple M2-branes at certain hypersurface singularities. We describe how these models can be engineered via generalized Hanany-Witten brane constructions. The AdS_4 x V_{5,2}/Z_k solutions may be deformed to a warped geometry R^{1,2} x T^* S^4/Z_k, with self-dual G-flux through the four-sphere. We show that this solution is dual to a supersymmetric mass deformation, which precisely modifies the classical moduli space of the field theory to the deformed geometry.
We study a general class of supersymmetric AdS_4 x Y_7 solutions of M-theory that have large N dual descriptions as N = 2 Chern-Simons-matter theories on S^3. The Hamiltonian function h_M for the M-theory circle, with respect to a certain contact structure on Y_7, plays an important role in the duality. We show that an M2-brane wrapping the M-theory circle, giving a fundamental string in AdS_4, is supersymmetric precisely at the critical points of h_M, and moreover the value of this function at the critical point determines the M2-brane action. Such a configuration determines the holographic dual of a BPS Wilson loop for a Hopf circle in S^3, and leads to an effective method for computing the Wilson loop on both sides of the correspondence in large classes of examples. We find agreement in all cases, including for several infinite families, and moreover we find that the image h_M(Y_7) determines the range of support of the eigenvalues in the dual large N matrix model, with the critical points of h_M mapping to points where the derivative of the eigenvalue density is discontinuous.
We study a special class of four-point correlation functions of infinitely heavy half-BPS operators in planar N=4 SYM which admit factorization into a product of two octagon form factors. We demonstrate that these functions satisfy a system of nonlinear integro-differential equations which are powerful enough to fully determine their dependence on the t Hooft coupling and two cross ratios. At weak coupling, solution to these equations yields a known series representation of the octagon in terms of ladder integrals. At strong coupling, we develop a systematic expansion of the octagon in the inverse powers of the coupling constant and calculate accompanying expansion coefficients analytically. We examine the strong coupling expansion of the correlation function in various kinematical regions and observe a perfect agreement both with the expected asymptotic behavior dictated by the OPE and with results of numerical evaluation. We find that, surprisingly enough, the strong coupling expansion is Borel summable. Applying the Borel-Pade summation method, we show that the strong coupling expansion correctly describes the correlation function over a wide region of the t Hooft coupling.
In this paper we perform, in the spirit of the holographic correspondence, a particular asymptotic limit of N=2, AdS_4 supergravity to N=2 supergravity on a locally AdS_3 boundary. Our boundary theory enjoys OSp(2|2) x SO(1,2) invariance and is shown to contain the D=3 super-Chern Simons OSp(2|2) theory considered in [Alvarez:2011gd] and featuring unconventional local supersymmetry. The model constructed in that reference describes the dynamics of a spin-1/2 Dirac field in the absence of spin 3/2 gravitini and was shown to be relevant for the description of graphene, near the Dirac points, for specific spatial geometries. Our construction yields the model in [Alvarez:2011gd] with a specific prescription on the parameters. In this framework the Dirac spin-1/2 fermion originates from the radial components of the gravitini in D=4.
The spectrum of IIB supergravity on AdS${}_5 times S^5$ contains a number of bound states described by long double-trace multiplets in $mathcal{N}=4$ super Yang-Mills theory at large t Hooft coupling. At large $N$ these states are degenerate and to obtain their anomalous dimensions as expansions in $tfrac{1}{N^2}$ one has to solve a mixing problem. We conjecture a formula for the leading anomalous dimensions of all long double-trace operators which exhibits a large residual degeneracy whose structure we describe. Our formula can be related to conformal Casimir operators which arise in the structure of leading discontinuities of supergravity loop corrections to four-point correlators of half-BPS operators.