Do you want to publish a course? Click here

Unconventional Supersymmetry at the Boundary of AdS_4 Supergravity

122   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we perform, in the spirit of the holographic correspondence, a particular asymptotic limit of N=2, AdS_4 supergravity to N=2 supergravity on a locally AdS_3 boundary. Our boundary theory enjoys OSp(2|2) x SO(1,2) invariance and is shown to contain the D=3 super-Chern Simons OSp(2|2) theory considered in [Alvarez:2011gd] and featuring unconventional local supersymmetry. The model constructed in that reference describes the dynamics of a spin-1/2 Dirac field in the absence of spin 3/2 gravitini and was shown to be relevant for the description of graphene, near the Dirac points, for specific spatial geometries. Our construction yields the model in [Alvarez:2011gd] with a specific prescription on the parameters. In this framework the Dirac spin-1/2 fermion originates from the radial components of the gravitini in D=4.



rate research

Read More

We present a large class of new backgrounds that are solutions of type II supergravity with a warped AdS${}_4$ factor, non-trivial axion-dilaton, B-field, and three- and five-form Ramond-Ramond fluxes. We obtain these solutions by applying non-Abelian T-dualities with respect to SU(2) or SU(2)/U(1) isometries to reductions to 10d IIA of 11d sugra solutions of the form AdS${}_4 times Y^7$, with $Y^7 = S^7/mathbb{Z}_k, S^7, M^{1,1,1}, Q^{1,1,1}$ and $N(1,1)$. The main class of reductions to IIA is along the Hopf fiber and leads to solutions of the form $AdS_4 times K_6$, where $K_6 $ is Kahler Einstein with $K_6=mathbb{CP}^3, S^2times mathbb{CP}^2, S^2times S^2 times S^2$; the first member of this class is dual to the ABJM field theory in the t Hooft limit. We also consider other less symmetric but susy preserving reductions along circles that are not the Hopf fiber. In the case of $N(1,1)$ we find an additional breaking of isometries in the NAT-dual background. To initiate the study of some properties of the field theory dual, we explicitly compute the central charge holographically.
We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.
We determine the general structure of quantum anomalies for the $R$-multiplet of four dimensional $mathcal{N}=1$ supersymmetric quantum field theories in the presence of background fields for an arbitrary number of Abelian flavor multiplets. By solving the Wess-Zumino consistency conditions for off-shell new minimal supergravity in four dimensions with an arbitrary number of Abelian vector multiplets, we compute the anomaly in the conservation of the supercurrent to leading non trivial order in the gravitino and vector multiplet fermions. We find that both $R$-symmetry and flavor anomalies necessarily lead to a supersymmetry anomaly, thus generalizing our earlier results to non superconformal theories with Abelian flavor symmetries. The anomaly in the conservation of the supercurrent leads to an anomalous transformation for the supercurrent under rigid supersymmetry on bosonic backgrounds that admit new minimal Killing spinors. The resulting deformation of the supersymmetry algebra has implications for supersymmetric localization computations on such backgrounds.
An action for the higher-derivative corrections to minimal gauged supergravity in four dimensions has been recently proposed. We demonstrate that the supersymmetric solutions of this model are those of the two-derivative action, and investigate some of their properties. In particular, we prove a formula for the renormalised on-shell action in terms of contributions from fixed points of a $U(1)$ action, and confirm that it is invariant under deformations which preserve the boundary almost contact structure.
We study breaking and restoration of supersymmetry in five-dimensional theories by determining the mass spectrum of fermions from their equations of motion. Boundary conditions can be obtained from either the action principle by extremizing an appropriate boundary action (interval approach) or by assigning parities to the fields (orbifold approach). In the former, fields extend continuously from the bulk to the boundaries, while in the latter the presence of brane mass-terms cause fields to jump when one moves across the branes. We compare the two approaches and in particular we carefully compute the non-trivial jump profiles of the wavefunctions in the orbifold picture for very general brane mass terms. We also include the effect of the Scherk-Schwarz mechanism in either approach and point out that for a suitable tuning of the boundary actions supersymmetry is present for arbitrary values of the Scherk-Schwarz parameter. As an application of the interval formalism we construct bulk and boundary actions for super Yang-Mills theory. Finally we extend our results to the warped Randall-Sundrum background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا