Do you want to publish a course? Click here

Heat capacity and Mosssbauer study of Self flux grown FeTe Single Crystal

230   0   0.0 ( 0 )
 Added by Veer Awana Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report mainly the heat capacity and Mossbauer study of self flux grown FeTe single crystal, which is ground state compound of the Fe chalcogenides superconducting series, i.e., FeTe1-x(Se/S)x. The as grown FeTe single crystal is large enough to the tune of few cm and the same crystallizes in tetragonal structure having space group of P4/nmm. FeTe shows the structural/magnetic phase transition at 70K in both magnetic and resistivity measurements. Heat capacity measurement also confirms the coupled structural/magnetic transition at the same temperature. The Debye model fitting of low temperature (below 70K) heat capacity exhibited Debye temperature to be 324K. MOssbauer spectra are performed at 300K and 5K. The 300K spectra showed two paramagnetic doublets and the 5K spectra exhibited hyperfine magnetic sextet with an average hyperfine field of 10.6Tesla matching with the results of Yoshikazu Mizuguchi et al.



rate research

Read More

We report synthesis of non superconducting parent compound of iron chalcogenide, i.e., FeTe single crystal by self flux method. The FeTe single crystal is crystallized in tetragonal structure with the P4/nmm space group. The detailed SEM (scanning electron microscopy) results showed that the crystals are formed in slab like morphology and are near (slight deficiency of Te) stoichiometric with homogenous distribution of Fe and Te. The coupled structural and magnetic phase transition is seen at around 70K in both electrical resistivity and magnetization measurements, which is hysteric (deltaT = 5K) in nature with cooling and warming cycles. Magnetic susceptibility (chi-T) measurements showed the magnetic transition to be of antiferromagnetic nature, which is substantiated by isothermal magnetization (M-H) plots as well. The temperature dependent electrical resistivity measured in 10kOe field in both in plane and out of plane field directions showed that the hysteric width nearly becomes double to deltaT = 10K, and is maximum for the out of plane field direction for the studied FeTe single crystal. We also obtained a sharp spike like peak in heat capacity Cp(T) measurement due to the coupled structural and magnetic order phase transitions.
We present heat capacity measurements on a series of superconducting Cu$_x$TiSe$_2$ single crystals with different Cu content down to 600 mK and up to 1 T performed by ac microcalorimetry. The samples cover a large portion of the phase diagram from an underdoped to a slightly overdoped region with an increasing superconducting critical temperature and the charge density wave (CDW) order gradually suppressed. The electronic heat capacity as a function of normalized temperature $T/T_c$ shows no difference regardless of the concentration of copper, i.e., regardless of how much the CDW order is developed in the samples. The data analysis reveals consistently a single s-wave gap with an intermediate coupling strength $2Delta/k_BT_c$ = 3.7 for all samples.
229 - Y.-S. Li , R. Borth , C. W. Hicks 2020
We report the development of a technique to measure heat capacity at large uniaxial pressure using a piezoelectric-driven device generating compressive and tensile strain in the sample. Our setup is optimized for temperatures ranging from 8 K down to millikelvin. Using an AC heat-capacity technique we are able to achieve an extremely high resolution and to probe a homogeneously strained part of the sample. We demonstrate the capabilities of our setup on the unconventional superconductor Sr$_2$RuO$_4$. By replacing thermometer and adjusting the remaining setup accordingly the temperature regime of the experiment can be adapted to other temperature ranges of interest.
We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown single crystal of BaFe2As2. A first-order antiferromagnetic (AF) transition near 135 K was detected by the splitting of NMR lines, which is accompanied by simultaneous structural transition as evidenced by a sudden large change of the electric field gradient tensor at the As site. The NMR results lead almost uniquely to the stripe spin structure in the AF phase. The data of spin-lattice relaxation rate indicate development of anisotropic spin fluctuations of the stripe-type with decreasing temperature in the paramagnetic phase.
236 - Teng Wang , Jianan Chu , Hua Jin 2019
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under different magnetic fields. A rather steep increase for the in-plane H_c2^ab with cooling, dmu_0H_c2^a/dT|T_c = -50.9 T/K, was observed, indicating an extremely high upper critical field. Possible origins for this behavior were discussed. The findings in our work is a great promotion both for understanding the physical properties and applications of 12442-type Fe-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا