Do you want to publish a course? Click here

Vibration decoupling system for massive bolometers in dry cryostats

108   0   0.0 ( 0 )
 Added by Romain Maisonobe
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pulse-tube based dilution refrigerators are massively employed in low temperature physics. They allow to reduce the running costs and to be operated with unprecedented easiness. However, the main drawback of this technology is the mechanical vibrations induced by the pulse-tube cryocooler. These perturbations can cause extra-noises drastically affecting the detector performance. In this paper, we propose a solution to mitigate the impact of these vibrations by mounting the detectors in an elastic-pendulum based suspended tower. Based on vibration modeling and experimental tests, we show that the vibration levels are attenuated by up to two orders of magnitude at most frequencies, especially above $sim20$ Hz, for both vertical and radial directions. Thanks to this passive isolation solution, vibration levels, both along vertical and radial directions, below 1 $mutextrm{g/}sqrt{text{Hz}}$ in the frequency range [1-1000] Hz are obtained. This provides a convenient environment to test the ultimate performance of low temperature detectors. As a result, we report an improvement by one to two orders of magnitude on the noise levels of massive cryogenic bolometers, leading to thermal energy resolutions improved by a factor 5 to 40. Finally, we conclude that the energy resolution of our cryogenic bolometers are no longer limited from any residual vibrations, hence allowing the perspective of further improving our bolometer performance in the context of low-mass dark matter searches and neutrino physics applications.



rate research

Read More

113 - Y. Akiyama , T. Akutsu , M. Ando 2019
A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main stages allows for achieving sufficient damping performance with a simple feedback as well as vibration isolation ratio. Three Type-Bp systems were installed in KAGRA, and were proved to satisfy the requirements on the damping performance, and also on estimated residual displacement of the optics.
Liquid Helium is used widely, from hospitals to characterization of materials at low temperatures. Many experiments at low temperatures require liquid Helium, particularly when vibration isolation precludes the use of cryocoolers and when one needs to cool heavy equipment such as superconducting coils. Here we describe methods to simplify the operations required to use liquid Helium by eliminating the use of high pressure bottles, avoiding blockage and improving heating and cooling rates. First we show a simple and very low cost method to transfer liquid Helium from a transport container into a cryostat that uses a manual pump having pumping and pressurizing ports, giving a liquid Helium transfer rate of about 100 liters an hour. Second, we describe a closed cycle circuit of Helium gas cooled in an external liquid nitrogen bath that allows precooling a cryogenic experiment without inserting liquid nitrogen into the cryostat, eliminating problems associated to the presence of nitrogen around superconducting magnets. And third, we show a sliding seal assembly and an inner vacuum chamber design that allows inserting large experiments into liquid Helium.
Fast, room temperature imaging at THz and sub-THz frequencies is an interesting feature which could unleash the full potential of plenty applications in security, healthcare and industrial production. In this Letter we introduce micromechanical bolometers based on silicon nitride trampoline membranes as broad-range detectors, down to the sub-THz frequencies. They show, at the largest wavelengths, room-temperature noise-equivalent-powers comparable to state-of-the-art commercial devices (~100 pW Hz-1/2); adding the good operation speed and the easy, large-scale fabrication process, the trampoline membrane could be the next candidate for cheap, room temperature THz imaging and related applications.
Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15ms down to time separation between the individual events of about 2ms.
We have measured a response to a black body radiation and noise of the cold-electron bolometers. The experimental results have been fitted by theoretical model with two heat-balance equations. The measured noise has been decomposed into several terms with the help of theory. It is demonstrated that the photon noise exceeds any other noise components, that allows us to conclude that the bolometers see the photon noise. Moreover, a peculiar shape of the noise dependence on the absorbed power originates completely from the photonic component according to the theory. In the additional experiment on heating of the cryostat plate together with the sample holder we have observed nearly independence of the noise on the electron temperature of the absorber, which has provided another proof of the presence of the photon noise in the first experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا