No Arabic abstract
How can $d+k$ vectors in $mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $theta(d,k):=min_Xmax_{x eq yin X}|langle x,yrangle|$ where the minimum is taken over all collections of $d+k$ unit vectors $Xsubseteqmathbb{R}^d$. In this paper, we focus on the case where $k$ is fixed and $dtoinfty$. In establishing bounds on $theta(d,k)$, we find an intimate connection to the existence of systems of ${k+1choose 2}$ equiangular lines in $mathbb{R}^k$. Using this connection, we are able to pin down $theta(d,k)$ whenever $kin{1,2,3,7,23}$ and establish asymptotics for general $k$. The main tool is an upper bound on $mathbb{E}_{x,ysimmu}|langle x,yrangle|$ whenever $mu$ is an isotropic probability mass on $mathbb{R}^k$, which may be of independent interest. Our results translate naturally to the analogous question in $mathbb{C}^d$. In this case, the question relates to the existence of systems of $k^2$ equiangular lines in $mathbb{C}^k$, also known as SIC-POVM in physics literature.
In this paper we investigate combinatorial constructions for $w$-cyclic holely group divisible packings with block size three (briefly by $3$-HGDPs). For any positive integers $u,v,w$ with $uequiv0,1~(bmod~3)$, the exact number of base blocks of a maximum $w$-cyclic $3$-HGDP of type $(u,w^v)$ is determined. This result is used to determine the exact number of codewords in a maximum three-dimensional $(utimes vtimes w,3,1)$ optical orthogonal code with at most one optical pulse per spatial plane and per wavelength plane.
We investigate several antipodal spherical designs on whether we can choose half of the points, one from each antipodal pair, such that they are balanced at the origin. In particular, root systems of type A, D and E, minimal points of Leech lattice and the unique tight 7-design on $S^{22}$ are studied. We also study a half of an antipodal spherical design from the viewpoint of association schemes and spherical designs of harmonic index $T$.
We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes, which greatly extends the class of a previous paper due to Munuera, Tenorio and Torres. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.
We investigate perfect codes in $mathbb{Z}^n$ under the $ell_p$ metric. Upper bounds for the packing radius $r$ of a linear perfect code, in terms of the metric parameter $p$ and the dimension $n$ are derived. For $p = 2$ and $n = 2, 3$, we determine all radii for which there are linear perfect codes. The non-existence results for codes in $mathbb{Z}^n$ presented here imply non-existence results for codes over finite alphabets $mathbb{Z}_q$, when the alphabet size is large enough, and has implications on some recent constructions of spherical codes.
A $t$-$(n,d,lambda)$ design over ${mathbb F}_q$, or a subspace design, is a collection of $d$-dimensional subspaces of ${mathbb F}_q^n$, called blocks, with the property that every $t$-dimensional subspace of ${mathbb F}_q^n$ is contained in the same number $lambda$ of blocks. A collection of matrices in over ${mathbb F}_q$ is said to hold a subspace design if the set of column spaces of its elements forms the blocks of a subspace design. We use notions of puncturing and shortening of rank metric codes and the rank-metric MacWilliams identities to establish conditions under which the words of a given rank in a linear rank metric code hold a subspace design.