No Arabic abstract
This work identifies information-theoretic quantities that are closely related to the required list size for successive cancellation list (SCL) decoding to implement maximum-likelihood decoding. It also provides an approximation for these quantities that can be computed efficiently for very long codes. There is a concentration around the mean of the logarithm of the required list size for sufficiently large block lengths. We further provide a simple method to estimate the mean via density evolution for the binary erasure channel (BEC). Simulation results for the binary-input additive white Gaussian noise channel as well as the BEC demonstrate the accuracy of the mean estimate. A modified Reed-Muller code with dynamic frozen bits performs very close to the random coding union (RCU) bound down to the block error rate of $10^{-5}$ under SCL decoding with list size $L=128$ when the block length is $N=128$. The analysis shows how to modify the design to improve the performance when a more practical list size, e.g., $L=32$, is adopted while keeping the performance with $L=128$ unchanged. For the block length of $N=512$, a design performing within $0.4$ dB from the RCU bound down to the block error rate of $10^{-6}$ under an SCL decoder with list size $L=1024$ is provided. The design is modified using the new guidelines so that the performance improves with practical list sizes, e.g., $Lin{8,32,128}$, outperforming 5G designs.
This paper presents an efficient hardware design approach for list successive cancellation (LSC) decoding of polar codes. By applying path-overlapping scheme, the l instances of (l > 1) successive cancellation (SC) decoder for LSC with list size l can be cut down to only one. This results in a dramatic reduction of the hardware complexity without any decoding performance loss. We also develop novel approaches to reduce the latencyassociated with the pipeline scheme. Simulation results show that with proposed design approach the hardware efficiency is increased significantly over the recently proposed LSC decoders.
Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-correction performance at moderate code length. In order to improve the error-correction performance of SC, two approaches are available: (i) SC-List decoding which keeps a list of candidates by running a number of SC decoders in parallel, thus increasing the implementation complexity, and (ii) SC-Flip decoding that relies on a single SC module, and keeps the computational complexity close to SC. In this work, we propose the partitioned SC-Flip (PSCF) decoding algorithm, which outperforms SC-Flip in terms of error-correction performance and average computational complexity, leading to higher throughput and reduced energy consumption per codeword. We also introduce a partitioning scheme that best suits our PSCF decoder. Simulation results show that at equivalent frame error rate, PSCF has up to $5 times$ less computational complexity than the SC-Flip decoder. At equivalent average number of iterations, the error-correction performance of PSCF outperforms SC-Flip by up to $0.15$ dB at frame error rate of $10^{-3}$.
A deep-learning-aided successive-cancellation list (DL-SCL) decoding algorithm for polar codes is introduced with deep-learning-aided successive-cancellation (DL-SC) decoding being a specific case of it. The DL-SCL decoder works by allowing additional rounds of SCL decoding when the first SCL decoding attempt fails, using a novel bit-flipping metric. The proposed bit-flipping metric exploits the inherent relations between the information bits in polar codes that are represented by a correlation matrix. The correlation matrix is then optimized using emerging deep-learning techniques. Performance results on a polar code of length 128 with 64 information bits concatenated with a 24-bit cyclic redundancy check show that the proposed bit-flipping metric in the proposed DL-SCL decoder requires up to 66% fewer multiplications and up to 36% fewer additions, without any need to perform transcendental functions, and by providing almost the same error-correction performance in comparison with the state of the art.
Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence repetition node corresponding to a particular class of bit sequences. Most existing special node types are special cases of the proposed sequence repetition node. Then, a fast parallel decoder is proposed for this class of node. To further speed up the decoding process of general nodes outside this class, a threshold-based hard-decision-aided scheme is introduced. The threshold value that guarantees a given error-correction performance in the proposed scheme is derived theoretically. Analysis and hardware implementation results on a polar code of length $1024$ with code rates $1/4$, $1/2$, and $3/4$ show that our proposed algorithm reduces the required clock cycles by up to $8%$, and leads to a $10%$ improvement in the maximum operating frequency compared to state-of-the-art decoders without tangibly altering the error-correction performance. In addition, using the proposed threshold-based hard-decision-aided scheme, the decoding latency can be further reduced by $57%$ at $mathrm{E_b}/mathrm{N_0} = 5.0$~dB.
Polar codes are a class of linear block codes that provably achieves channel capacity, and have been selected as a coding scheme for $5^{rm th}$ generation wireless communication standards. Successive-cancellation (SC) decoding of polar codes has mediocre error-correction performance on short to moderate codeword lengths: the SC-Flip decoding algorithm is one of the solutions that have been proposed to overcome this issue. On the other hand, SC-Flip has a higher implementation complexity compared to SC due to the required log-likelihood ratio (LLR) selection and sorting process. Moreover, it requires a high number of iterations to reach good error-correction performance. In this work, we propose two techniques to improve the SC-Flip decoding algorithm for low-rate codes, based on the observation of channel-induced error distributions. The first one is a fixed index selection (FIS) scheme to avoid the substantial implementation cost of LLR selection and sorting with no cost on error-correction performance. The second is an enhanced index selection (EIS) criterion to improve the error-correction performance of SC-Flip decoding. A reduction of $24.6%$ in the implementation cost of logic elements is estimated with the FIS approach, while simulation results show that EIS leads to an improvement on error-correction performance improvement up to $0.42$ dB at a target FER of $10^{-4}$.