Do you want to publish a course? Click here

Photon statistics and bunching of a chaotic semiconductor laser

102   0   0.0 ( 0 )
 Added by Guo Yanqiang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The photon statistics and bunching of a semiconductor laser with external optical feedback are investigated experimentally and theoretically. In a chaotic regime, the photon number distribution is measured and undergoes a transition from Bose-Einstein distribution to Poisson distribution with increasing the mean photon number. The second order degree of coherence decreases gradually from 2 to 1. Based on Hanbury Brown-Twiss scheme, pronounced photon bunching is observed experimentally for various injection currents and feedback strengths, which indicates the randomness of the associated emission light. Near-threshold injection currents and strong feedback strengths modify exactly the laser performance to be more bunched. The macroscopic chaotic dynamics is confirmed simultaneously by high-speed analog detection. The theoretical results qualitatively agree with the experimental results. It is potentially useful to extract randomness and achieve desired entropy source for random number generator and imaging science by quantifying the control parameters.



rate research

Read More

The second order photon correlation g^(2)(tau) of a chaotic optical-feedback semiconductor laser is precisely measured using a Hanbury Brown-Twiss interferometer. The accurate g^(2)(tau) with non-zero delay time is obtained experimentally from the photon pair time interval distribution through a ninth-order self-convolution correction. The experimental results agree well with the theoretical analysis. The relative error of g^(2)(tau) is no more than 0.005 within 50 ns delay time. The bunching effect and coherence time of the chaotic laser are measured via the precise photon correlation technique. This technique provides a new tool to improve the accuracy of g^(2)(tau) measurement and boost applications of quantum statistics and correlation.
Anyons, particles displaying a fractional exchange statistics intermediate between bosons and fermions, play a central role in the fractional quantum Hall effect and various spin lattice models, and have been proposed for topological quantum computing schemes due to their resilience to noise. Here we use parametric down-conversion in an integrated semiconductor chip to generate biphoton states simulating anyonic particle statistics, in a reconfigurable manner. Our scheme exploits the frequency entanglement of the photon pairs, which is directly controlled through the spatial shaping of the pump beam. These results, demonstrated at room temperature and telecom wavelength on a chip-integrated platform, pave the way to the practical implementation of quantum simulation tasks with tailored particle statistics.
High-dimensional entangled states of light provide novel possibilities for quantum information, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the frequency degree of freedom combines the assets of robustness to propagation and easy handling with standard telecommunication components. Here we use an integrated semiconductor chip to engineer the wavefunction and exchange statistics of frequency-entangled photon pairs directly at the generation stage, without post-manipulation. Tuning the spatial properties of the pump beam allows to generate frequency-anticorrelated, correlated and separable states, and to control the symmetry of the spectral wavefunction to induce either bosonic or fermionic behaviors. These results, supported by analytical and numerical calculations, open promising perspectives for the quantum simulation of fermionic problems with photons on an integrated platform, as well as for communication and computation protocols exploiting antisymmetric high-dimensional quantum states.
Although quantum physics is well understood in inertial reference frames (flat spacetime), a current challenge is the search for experimental evidence of non-trivial or unexpected behaviour of quantum systems in non-inertial frames. Here, we present a novel test of quantum mechanics in a non-inertial reference frame: we consider Hong-Ou-Mandel (HOM) interference on a rotating platform and study the effect of uniform rotation on the distinguishability of the photons. Both theory and experiments show that the rotational motion induces a relative delay in the photon arrival times at the exit beamsplitter and that this delay is observed as a shift in the position of the HOM dip. This experiment can be extended to a full general relativistic test of quantum physics using satellites in Earth orbit and indicates a new route towards the use of photonic technologies for investigating quantum mechanics at the interface with relativity.
We theoretically consider wave mixing under the irradiation of a single qubit by two photon fields. The first signal is a classical monochromatic drive, while the second one is a nonclassical light. Particularly, we address two examples of a nonclassical light: (i) a broadband squeezed light and (ii) a periodically excited quantum superposition of Fock states with 0 and 1 photons. The mixing of classical and nonclassical photon fields gives rise to side peaks due to the elastic multiphoton scattering. We show that side peaks structure is distinct from the situation when two classical fields are mixed. The most striking feature is that some peaks are absent. The analysis of peak amplitudes can be used to probe photon statistics in the nonclassical mode.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا