Do you want to publish a course? Click here

Lagrangian formulation, generalizations and quantization of null Maxwells knots

85   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Knotted solutions to electromagnetism are investigated as an independent subsector of the theory. We write down a Lagrangian and a Hamiltonian formulation of Batemans construction for the knotted electromagnetic solutions. We introduce a general definition of the null condition and generalize the construction of Maxwells theory to massless free complex scalar, its dual two form field, and to a massless DBI scalar. We set up the framework for quantizing the theory both in a path integral approach, as well as the canonical Dirac method for a constrained system. We make several observations about the semi-classical quantization of systems of null configurations.



rate research

Read More

We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having $k$ rows, on a basis of the BRST--BFV approach suggested for bosonic fields in our first article (Nucl. Phys. B862 (2012) 270, [arXiv:1110.5044[hep-th]). Starting from a description of fermionic mixed-symmetry higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space associated with a special Poincare module, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a system of first-class constraints. To do this, we find, in first time, by means of generalized Verma module the auxiliary representations of the constraint subsuperalgebra, to be isomorphic due to Howe duality to $osp(k|2k)$ superalgebra, and containing the subsystem of second-class constraints in terms of new oscillator variables. We suggest a universal procedure of finding unconstrained gauge-invariant Lagrangians with reducible gauge symmetries, describing the dynamics of both massless and massive fermionic fields of any spin. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by constraints corresponding to an irreducible Poincare-group representation. As examples of the general approach, we propose a method of Lagrangian construction for fermionic fields subject to an arbitrary Young tableaux having 3 rows, and obtain a gauge-invariant Lagrangian for a new model of a massless rank-3 spin-tensor field of spin (5/2,3/2) with first-stage reducible gauge symmetries and a non-gauge Lagrangian for a massive rank-3 spin-tensor field of spin (5/2,3/2).
78 - Steven Duplij 2019
A general approach is presented to describing nonlinear classical Maxwell electrodynamics with conformal symmetry. We introduce generalized nonlinear constitutive equations, expressed in terms of constitutive tensors dependent on conformal-invariant functionals of the field strengths. This allows a characterization of Lagrangian and non-Lagrangian theories. We obtain a general formula for possible Lagrangian densities in nonlinear conformal-invariant electrodynamics. This generalizes the standard Lagrangian of classical linear electrodynamics so as to preserve the conformal symmetry.
158 - Y. M. Cho , Seung Hun Oh , 2018
After Dirac introduced the monopole, topological objects have played increasingly important roles in physics. In this review we discuss the role of the knot, the most sophisticated topological object in physics, and related topological objects in various areas in physics. In particular, we discuss how the knots appear in Maxwells theory, Skyrme theory, and multi-component condensed matter physics.
132 - Barak Gabai , Xi Yin 2021
In this paper we give a streamlined derivation of the exact quantization condition (EQC) on the quantum periods of the Schrodinger problem in one dimension with a general polynomial potential, based on Wronskian relations. We further generalize the EQC to potentials with a regular singularity, describing spherical symmetric quantum mechanical systems in a given angular momentum sector. We show that the thermodynamic Bethe ansatz (TBA) equations that govern the quantum periods undergo nontrivial monodromies as the angular momentum is analytically continued between integer values in the complex plane. The TBA equations together with the EQC are checked numerically against Hamiltonian truncation at real angular momenta and couplings, and are used to explore the analytic continuation of the spectrum on the complex angular momentum plane in examples.
74 - Frank Ferrari 2020
We formulate the most general gravitational models with constant negative curvature (hyperbolic gravity) on an arbitrary orientable two-dimensional surface of genus $g$ with $b$ circle boundaries in terms of a $text{PSL}(2,mathbb R)_partial$ gauge theory of flat connections. This includes the usual JT gravity with Dirichlet boundary conditions for the dilaton field as a special case. A key ingredient is to realize that the correct gauge group is not the full $text{PSL}(2,mathbb R)$, but a subgroup $text{PSL}(2,mathbb R)_{partial}$ of gauge transformations that go to $text{U}(1)$ local rotations on the boundary. We find four possible classes of boundary conditions, with associated boundary terms, that can be applied to each boundary component independently. Class I has five inequivalent variants, corresponding to geodesic boundaries of fixed length, cusps, conical defects of fixed angle or large cylinder-shaped asymptotic regions with boundaries of fixed lengths and extrinsic curvatures one or greater than one. Class II precisely reproduces the usual JT gravity. In particular, the crucial extrinsic curvature boundary term of the usual second order formulation is automatically generated by the gauge theory boundary term. Class III is a more exotic possibility for which the integrated extrinsic curvature is fixed on the boundary. Class IV is the Legendre transform of class II; the constraint of fixed length is replaced by a boundary cosmological constant term.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا