Do you want to publish a course? Click here

Gauge Theory Formulation of Hyperbolic Gravity

75   0   0.0 ( 0 )
 Added by Frank Ferrari
 Publication date 2020
  fields Physics
and research's language is English
 Authors Frank Ferrari




Ask ChatGPT about the research

We formulate the most general gravitational models with constant negative curvature (hyperbolic gravity) on an arbitrary orientable two-dimensional surface of genus $g$ with $b$ circle boundaries in terms of a $text{PSL}(2,mathbb R)_partial$ gauge theory of flat connections. This includes the usual JT gravity with Dirichlet boundary conditions for the dilaton field as a special case. A key ingredient is to realize that the correct gauge group is not the full $text{PSL}(2,mathbb R)$, but a subgroup $text{PSL}(2,mathbb R)_{partial}$ of gauge transformations that go to $text{U}(1)$ local rotations on the boundary. We find four possible classes of boundary conditions, with associated boundary terms, that can be applied to each boundary component independently. Class I has five inequivalent variants, corresponding to geodesic boundaries of fixed length, cusps, conical defects of fixed angle or large cylinder-shaped asymptotic regions with boundaries of fixed lengths and extrinsic curvatures one or greater than one. Class II precisely reproduces the usual JT gravity. In particular, the crucial extrinsic curvature boundary term of the usual second order formulation is automatically generated by the gauge theory boundary term. Class III is a more exotic possibility for which the integrated extrinsic curvature is fixed on the boundary. Class IV is the Legendre transform of class II; the constraint of fixed length is replaced by a boundary cosmological constant term.



rate research

Read More

Any local gauge theory can be represented as an AKSZ sigma model (upon parameterization if necessary). However, for non-topological models in dimension higher than 1 the target space is necessarily infinite-dimensional. The interesting alternative known for some time is to allow for degenerate presymplectic structure in the target space. This leads to a very concise AKSZ-like representation for frame-like Lagrangians of gauge systems. In this work we concentrate on Einstein gravity and show that not only the Lagrangian but also the full-scale Batalin--Vilkovisky formulation is naturally encoded in the presymplectic AKSZ formulation, giving an elegant supergeometrical construction of BV for Cartan-Weyl action. The same applies to the main structures of the respective Hamiltonian BFV formulation.
We revisit the implementation of the metric-independent Fock-Schwinger gauge in the abelian Chern-Simons field theory defined in ${mathbb{R}}^3$ by means of a homotopy condition. This leads to the lagrangian $F wedge hF$ in terms of curvatures $F$ and of the Poincare homotopy operator $h$. The corresponding field theory provides the same link invariants as the abelian Chern-Simons theory. Incidentally the part of the gauge field propagator which yields the link invariants of the Chern-Simons theory in the Fock-Schwinger gauge is recovered without any computation.
We give an octonionic formulation of the N = 1 supersymmetry algebra in D = 11, including all brane charges. We write this in terms of a novel outer product, which takes a pair of elements of the division algebra A and returns a real linear operator on A. More generally, with this product comes the power to rewrite any linear operation on R^n (n = 1,2,4,8) in terms of multiplication in the n-dimensional division algebra A. Finally, we consider the reinterpretation of the D = 11 supersymmetry algebra as an octonionic algebra in D = 4 and the truncation to division subalgebras.
We study an $SO(1,3)$ pure connection formulation in four dimensions for real-valued fields, inspired by the Capovilla, Dell and Jacobson complex self-dual approach. By considering the CMPR BF action, also, taking into account a more general class of the Cartan-Killing form for the Lie algebra $mathfrak{so(1,3)}$ and by refining the structure of the Lagrange multipliers, we integrate out the metric variables in order to obtain the pure connection action. Once we have obtained this action, we impose certain restrictions on the Lagrange multipliers, in such a way that the equations of motion led us to a family of torsionless conformally flat Einstein manifolds, parametrized by two numbers. Finally, we show that, by a suitable choice of parameters, that self-dual spaces (Anti-) De Sitter can be obtained.
140 - A. Pinzul , A. Stern 2007
The choice of a star product realization for noncommutative field theory can be regarded as a gauge choice in the space of all equivalent star products. With the goal of having a gauge invariant treatment, we develop tools, such as integration measures and covariant derivatives on this space. The covariant derivative can be expressed in terms of connections in the usual way giving rise to new degrees of freedom for noncommutative theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا