Do you want to publish a course? Click here

Structure and Expansion Law of HII Regions in structured Molecular Clouds

114   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H,{ ormalsize II} regions in turbulent, magnetised, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on the structure, dynamics and expansion laws of these regions. Once a massive star forms in our highly structured clouds, its ionising radiation eventually stops the accretion (through filaments) toward the massive star-forming regions. The new over-pressured H,{ ormalsize II} regions push away the dense gas, thus disrupting the more massive collapse centres. Also, because of the complex density structure in the cloud, the H,{ ormalsize II} regions expand in a hybrid manner: they virtually do not expand toward the densest regions (cores), while they expand according to the classical analytical result towards the rest of the cloud, and in an accelerated way, as a blister region, towards the diffuse medium. Thus, the ionised regions grow anisotropically, and the ionising stars generally appear off-centre of the regions. Finally, we find that the hypotheses assumed in standard H,{ ormalsize II}-region expansion models (fully embedded region, blister-type, or expansion in a density gradient) apply simultaneously in different parts of our simulated H,{ ormalsize II} regions, producing a net expansion law ($R propto t^alpha$, with $alpha$ in the range of 0.93-1.47 and a mean value of $1.2 pm 0.17$) that differs from any of those of the standard models.



rate research

Read More

We present a detailed characterization of the population of compact radio-continuum sources in W51 A using subarcsecond VLA and ALMA observations. We analyzed their 2-cm continuum, the recombination lines (RLs) H77$alpha$ and H30$alpha$, and the lines of $rm H_{2}CO(3_{0,3}-2_{0,2})$, $rm H_{2}CO(3_{2,1}-2_{2,0})$, and $rm SO(6_{5}-5_{4})$. We derive diameters for 10/20 sources in the range $D sim 10^{-3}$ to $sim 10^{-2}$ pc, thus placing them in the regime of hypercompact HII regions (HC HIIs). Their continuum-derived electron densities are in the range $n_{rm e} sim 10^4$ to $10^5$ cm$^{-3}$, lower than typically considered for HC HIIs. We combined the RL measurements and independently derived $n_{rm e}$, finding the same range of values but significant offsets for individual measurements between the two methods. We found that most of the sources in our sample are ionized by early B-type stars, and a comparison of $n_{rm e}$ vs $D$ shows that they follow the inverse relation previously derived for ultracompact (UC) and compact HIIs. When determined, the ionized-gas kinematics is always (7/7) indicative of outflow. Similarly, 5 and 3 out of the 8 HC HIIs still embedded in a compact core show evidence for expansion and infall motions in the molecular gas, respectively. We hypothesize that there could be two different types of $hypercompact$ ($D< 0.05$ pc) HII regions: those that essentially are smaller, expanding UC HIIs; and those that are also $hyperdense$ ($n_{rm e} > 10^6$ cm$^{-3}$), probably associated with O-type stars in a specific stage of their formation or early life.
The structure of molecular clouds (MCs) holds important clues on the physical processes that lead to their formation and subsequent evolution. While it is well established that turbulence imprints a self-similar structure to the clouds, other processes, such as gravity and stellar feedback, can break their scale-free nature. The break of self-similarity can manifest itself in the existence of characteristic scales that stand out from the underlying structure generated by turbulent motions. We investigate the structure of the Cygnus-X North and the Polaris MCs which represent two extremes in terms of their star formation activity. We characterize the structure of the clouds using the delta-variance ($Delta$-variance) spectrum. In Polaris, the structure of the cloud is self-similar over more than one order of magnitude in spatial scales. In contrast, the $Delta$-variance spectrum of Cygnus-X exhibits an excess and a plateau on physical scales of ~0.5-1.2 pc. In order to explain the observations for Cygnus-X, we use synthetic maps in which we overlay populations of discrete structures on top of a fractal Brownian motion (fBm) image. The properties of these structures such as their major axis sizes, aspect ratios, and column density contrasts are randomly drawn from parameterized distribution functions. We show that it is possible to reproduce a $Delta$-variance spectrum that resembles the one of the Cygnus-X cloud. We also use a reverse engineering approach in which we extract the compact structures in the Cygnus-X cloud and re-inject them on an fBm map. The calculated $Delta$-variance using this approach deviates from the observations and is an indication that the range of characteristic scales observed in Cygnus-X is not only due to the existence of compact sources, but is a signature of the whole population of structures, including more extended and elongated structures
Density profiles of isolated cores derived from thermal dust continuum emission rely on models of dust properties, such as mass opacity, which are poorly constrained. With complementary measures from near-infrared extinction maps, we can assess the reliability of commonly-used dust models. In this work, we compare Herschel-derived maps of the optical depth with equivalent maps derived from CFHT WIRCAM near-infrared observations for three isolated cores: CB68, L429, and L1552. We assess the dust opacities provided from four models: OH1a, OH5a, Orm1, and Orm4. Although the consistency of the models differs between the three sources, the results suggest that the optical properties of dust in the envelopes of the cores are best described by either silicate and bare graphite grains (e.g., Orm1) or carbonaceous grains with some coagulation and either thin or no ice mantles (e.g., OH5a). None of the models, however, individually produced the most consistent optical depth maps for every source. The results suggest that either the dust in the cores is not well described by any one dust property model, the application of the dust models cannot be extended beyond the very center of the cores, or more complex SED fitting functions are necessary.
We perform ideal MHD high resolution AMR simulations with driven turbulence and self-gravity and find that long filamentary molecular clouds are formed at the converging locations of large-scale turbulence flows and the filaments are bounded by gravity. The magnetic field helps shape and reinforce the long filamentary structures. The main filamentary cloud has a length of ~4.4 pc. Instead of a monolithic cylindrical structure, the main cloud is shown to be a collection of fiber/web-like sub-structures similar to filamentary clouds such as L1495. Unless the line-of-sight is close to the mean field direction, the large-scale magnetic field and striations in the simulation are found roughly perpendicular to the long axis of the main cloud, similar to 1495. This provides strong support for a large-scale moderately strong magnetic field surrounding L1495. We find that the projection effect from observations can lead to incorrect interpretations of the true three-dimensional physical shape, size, and velocity structure of the clouds. Helical magnetic field structures found around filamentary clouds that are interpreted from Zeeman observations can be explained by a simple bending of the magnetic field that pierces through the cloud. We demonstrate that two dark clouds form a T-shape configuration which are strikingly similar to the Infrared dark cloud SDC13 leading to the interpretation that SDC13 results from a collision of two long filamentary clouds. We show that a moderately strong magnetic field (M_A ~ 1) is crucial for maintaining a long and slender filamentary cloud for a long period of time ~0.5 million years.
127 - Jeong-Gyu Kim 2016
Dynamical expansion of H II regions around star clusters plays a key role in dispersing the surrounding dense gas and therefore in limiting the efficiency of star formation in molecular clouds. We use a semi-analytic method and numerical simulations to explore expansion of spherical dusty H II regions and surrounding neutral shells and the resulting cloud disruption. Our model for shell expansion adopts the static solutions of Draine (2011) for dusty H II regions and considers the contact outward forces on the shell due to radiation and thermal pressures as well as the inward gravity from the central star and the shell itself. We show that the internal structure we adopt and the shell evolution from the semi-analytic approach are in good agreement with the results of numerical simulations. Strong radiation pressure in the interior controls the shell expansion indirectly by enhancing the density and pressure at the ionization front. We calculate the minimum star formation efficiency $epsilon_{min}$ required for cloud disruption as a function of the clouds total mass and mean surface density. Within the adopted spherical geometry, we find that typical giant molecular clouds in normal disk galaxies have $epsilon_{min} lesssim 10$%, with comparable gas and radiation pressure effects on shell expansion. Massive cluster-forming clumps require a significantly higher efficiency of $epsilon_{min} gtrsim 50$% for disruption, produced mainly by radiation-driven expansion. The disruption time is typically of the order of a free-fall timescale, suggesting that the cloud disruption occurs rapidly once a sufficiently luminous H II region is formed. We also discuss limitations of the spherical idealization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا