Do you want to publish a course? Click here

Laser frequency stabilization using a transfer interferometer

307   0   0.0 ( 0 )
 Added by Amar Vutha
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible and robust way to stabilize multiple laser frequencies to better than 1 MHz.



rate research

Read More

We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic coherence (dipole oscillations) as a phase memory of the transmitting laser field. A preliminary experiment using a distributed feedback laser diode and a rubidium vapor cell demonstrates a shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This method would improve the performance of gas-cell-based optical atomic clocks and magnetometers and facilitate laser-cooling experiments using narrow transitions.
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain `{a} Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.
We report on a calibration procedure that enhances the precision of an interferometer based frequency stabilization by several orders of magnitude. For this purpose the frequency deviations of the stabilization are measured precisely by means of a frequency comb. This allows to implement several calibration steps that compensate different systematic errors. The resulting frequency deviation is shown to be less than $5.7 $MHz (rms $1.6 $MHz) in the whole wavelength interval $750 - 795 $nm. Wide tuning of a stabilized laser at this exceptional precision is demonstrated.
562 - M Fujieda , D Piester , T Gotoh 2014
In this paper we report that carrier-phase two-way satellite time and frequency transfer (TWSTFT) was successfully demonstrated over a very long baseline of 9,000 km, established between the National Institute of Information and Communications Technology (NICT) and the Physikalisch-Technische Bundesanstalt (PTB). We verified that the carrier-phase TWSTFT (TWCP) result agreed with those obtained by conventional TWSTFT and GPS carrier-phase (GPSCP) techniques. Moreover, a much improved short-term instability for frequency transfer of $2times10^{-13}$ at 1 s was achieved, which is at the same level as previously confirmed over a shorter baseline within Japan. The precision achieved was so high that the effects of ionospheric delay became significant which are ignored in conventional TWSTFT even over a long link. We compensated for these effects using ionospheric delays computed from regional vertical total electron content maps. The agreement between the TWCP and GPSCP results was improved because of this compensation.
Ultraviolet (UV) diode lasers are widely used in many photonics applications. But their frequency stabilization schemes are not as mature as frequency-doubling lasers, mainly due to some limitations in the UV spectral region. Here we developed a high-performance UV frequency stabilization technique implemented directly on UV diode lasers by combining the dichroic atomic vapor laser lock and the resonant transfer cavity lock. As an example, we demonstrate a stable locking with frequency standard deviations of approximately 200 KHz and 300 KHz for 399nm and 370nm diode lasers in 20 minutes. We achieve a long-term frequency drift of no more than 1 MHz for the target 370nm laser within an hour, which was further verified with fluorescence counts rates of a single trapped $^{171}$Yb$^+$ ion. We also find strong linear correlations between lock points and environmental factors such as temperature and atmospheric pressure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا