Do you want to publish a course? Click here

Carrier-phase Two-Way Satellite Frequency Transfer over a Very Long Baseline

451   0   0.0 ( 0 )
 Added by Tetsuya Ido
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we report that carrier-phase two-way satellite time and frequency transfer (TWSTFT) was successfully demonstrated over a very long baseline of 9,000 km, established between the National Institute of Information and Communications Technology (NICT) and the Physikalisch-Technische Bundesanstalt (PTB). We verified that the carrier-phase TWSTFT (TWCP) result agreed with those obtained by conventional TWSTFT and GPS carrier-phase (GPSCP) techniques. Moreover, a much improved short-term instability for frequency transfer of $2times10^{-13}$ at 1 s was achieved, which is at the same level as previously confirmed over a shorter baseline within Japan. The precision achieved was so high that the effects of ionospheric delay became significant which are ignored in conventional TWSTFT even over a long link. We compensated for these effects using ionospheric delays computed from regional vertical total electron content maps. The agreement between the TWCP and GPSCP results was improved because of this compensation.

rate research

Read More

We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible and robust way to stabilize multiple laser frequencies to better than 1 MHz.
123 - J. Guena 2017
We report on the first comparison of distant caesium fountain primary frequency standards (PFSs) via an optical fiber link. The 1415 km long optical link connects two PFSs at LNE-SYRTE (Laboratoire National de m{e}trologie et dEssais - SYst`{e}me de R{e}f{e}rences Temps-Espace) in Paris (France) with two at PTB (Physikalisch-Technische Bundesanstalt) in Braunschweig (Germany). For a long time, these PFSs have been major contributors to accuracy of the International Atomic Time (TAI), with stated accuracies of around $3times 10^{-16}$. They have also been the references for a number of absolute measurements of clock transition frequencies in various optical frequency standards in view of a future redefinition of the second. The phase coherent optical frequency transfer via a stabilized telecom fiber link enables far better resolution than any other means of frequency transfer based on satellite links. The agreement for each pair of distant fountains compared is well within the combined uncertainty of a few 10$^{-16}$ for all the comparisons, which fully supports the stated PFSs uncertainties. The comparison also includes a rubidium fountain frequency standard participating in the steering of TAI and enables a new absolute determination of the $^{87}$Rb ground state hyperfine transition frequency with an uncertainty of $3.1times 10^{-16}$. This paper is dedicated to the memory of Andr{e} Clairon, who passed away on the 24$^{th}$ of December 2015, for his pioneering and long-lasting efforts in atomic fountains. He also pioneered optical links from as early as 1997.
Time and frequency transfer lies at the heart of the field of metrology. Compared to current microwave dissemination such as GPS, optical domain dissemination can provide more than one order of magnitude in terms of higher accuracy, which allows for many applications such as the redefinition of the second, tests of general relativity and fundamental quantum physics, precision navigation and quantum communication. Although optical frequency transfer has been demonstrated over thousand kilometers fiber lines, intercontinental time comparison and synchronization still requires satellite free space optical time and frequency transfer. Quite a few pioneering free space optical time and frequency experiments have been implemented at the distance of tens kilometers at ground level. However, there exists no detailed analysis or ground test to prove the feasibility of satellite-based optical time-frequency transfer. Here, we analyze the possibility of this system and then provide the first-step ground test with high channel loss. We demonstrate the optical frequency transfer with an instability of $10^{-18}$ level in 8,000 seconds across a 16-km free space channel with a loss of up to 70~dB, which is comparable with the loss of a satellite-ground link at medium earth orbit (MEO) and geostationary earth orbit (GEO).
95 - R.-S. Lu 2011
NRAO 530 is an optically violent variable source and has been studied with multi-epoch multi-frequency high-resolution VLBI observations. NRAO 530 was monitored with the VLBA at three frequencies (22, 43 and 86 GHz) on 10 consecutive days in 2007 May during observations of the Galactic Center (Sgr A*). Furthermore, analysis of archival data of NRAO 530 at 15 GHz over the last ten years allows us to study its detailed jet kinematics. We identified the compact component located at the southern-end of the jet as the VLBI core, consistent with previous studies. The 10-d monitoring data at the 3 high frequencies were shown to produce high quality and self-consistent measurements of the component positions, from which we detected for the first time a two-dimensional frequency-dependent position shift. In addition, the repeated measurements also permit us to investigate the interday flux density and structure variability of NRAO 530. We find that it is more variable for the inner jet components than those further out. We obtained apparent velocities for eight jet components with $beta_{rm app} ranging from 2 to 26 c. Accordingly, we estimated physical jet parameters with the minimum Lorentz factor of 14 and Doppler factors in the range of 14--28 (component f). The changes in the morphology of NRAO 530 were related to the motion of separate jet components with the most pronounced changes occurring in the regions close to the core. For NRAO 530, we estimated a P.A. swing of $3^{circ}.4$ per year for the entire inner jet (components d and e). The non-ballistic motion and change of jet orientation makes this source another prominent example of a helical and possibly `swinging jet.
We demonstrate a remote microwave/radio-frequency (RF) transfer technique based on the stabilization of a fiber link using a fiber-loop optical-microwave phase detector (FLOM-PD). This method compensates for the excess phase fluctuations introduced in fiber transfer by direct phase comparison between the optical pulse train reflected from the remote site and the local microwave/RF signal using the FLOM-PD. This enables sub-fs resolution and long-term stable link stabilization while having wide timing detection range and less demand in fiber dispersion compensation. The demonstrated relative frequency instability between 2.856-GHz RF oscillators separated by a 2.3-km fiber link is $7.6 times 10^{-18}$ and $6.5 times 10^{-19}$ at 1000 s and 82500 s averaging time, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا