No Arabic abstract
This work reports the strain effect on the electrical properties of highly doped n-type single crystalline cubic silicon carbide (3C-SiC) transferred onto a 6-inch glass substrate employing an anodic bonding technique. The experimental data shows high gauge factors of -8.6 in longitudinal direction and 10.5 in transverse direction along the [100] orientation. The piezoresistive effect in the highly doped 3C-SiC film also exhibits an excellent linearity and consistent reproducibility after several bending cycles. The experimental result was in good agreement with the theoretical analysis based on the phenomenon of electron transfer between many valleys in the conduction band of n-type 3C-SiC. Our finding for the large gauge factor in n-type 3C- SiC coupled with the elimination of the current leak to the insulated substrate could pave the way for the development of single crystal SiC-on-glass based MEMS applications.
This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the electron drift velocity and the non-equilibrium temperature are obtained theoretically by using a Non-Equilibrium Quantum Kinetic Theory, derived from the method of Nonequilibrium Statistical Operator (NSO). The dependence on the intensity and orientation of the applied electric field of this macrovariables and mobility are derived and analyzed. From the results obtained in this paper, the most attractive of these semiconductors for applications requiring greater electronic mobility is the polytype 4H-SiC with the electric field applied perpendicular to the c-axis.
Recently, Chi Xu et al. predicted the phase-filling singularities (PFS) in the optical dielectric function (ODF) of the highly doped $n$-type Ge and confirmed in experiment the PFS associated $E_{1}+Delta_{1}$ transition by advanced textit{in situ} doping technology [Phys. Rev. Lett. 118, 267402 (2017)], but the strong overlap between $E_{1}$ and $E_{1}+Delta_{1}$ optical transitions made the PFS associated $E_{1}$ transition that occurs at the high doping concentration unobservable in their measurement. In this work, we investigate the PFS of the highly doped n-type Ge in the presence of the uniaxial and biaxial tensile strain along [100], [110] and [111] crystal orientation. Compared with the relaxed bulk Ge, the tensile strain along [100] increases the energy separation between the $E_{1}$ and $E_{1}+Delta_{1}$ transition, making it possible to reveal the PFS associated $E_{1}$ transition in optical measurement. Besides, the application of tensile strain along [110] and [111] offers the possibility of lowering the required doping concentration for the PFS to be observed, resulting in new additional features associated with $E_{1}+Delta_{1}$ transition at inequivalent $L$-valleys. These theoretical predications with more distinguishable optical transition features in the presence of the uniaxial and biaxial tensile strain can be more conveniently observed in experiment, providing new insights into the excited states in heavily doped semiconductors.
This work reports on the morphological and electrical properties of Ni-based back-side Ohmic contacts formed by laser annealing process for SiC power diodes. Nickel films, 100 nm thick, have been sputtered on the back-side of heavily doped 110 um 4H-SiC thinned substrates after mechanical grinding. Then, to achieve Ohmic behavior, the metal films have been irradiated with an UV excimer laser with a wavelength of 310 nm, an energy density of 4.7 J/cm2 and pulse duration of 160 ns. The morphological and structural properties of the samples were analyzed by means of different techniques. Nanoscale electrical analyses by conductive Atomic Force Microscopy (C-AFM) allowed correlating the morphology of the annealed metal films with their local electrical properties. Ohmic behavior of the contacts fabricated by laser annealing have been investigated and compared with the standard Rapid Thermal Annealing (RTA) process. Finally, it was integrated in the fabrication of 650V SiC Schottky diodes.
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e2/h, a high ON/OFF ratio of >107 at 170 K, and large electron and hole mobility of ~200 cm2V-1s-1 at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ~330 cm2V-1s-1 and that of holes to ~270 cm2V-1s-1. We attribute our ability to observe the intrinsic, phonon limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible and transparent low-resistance Ohmic contacts to a wide range of quasi-2D semiconductors. KEYWORDS: MoS2, WSe2, field-effect transistors, graphene, Schottky barrier, ionic-liquid gate
Printed electronics rely on the deposition of conductive liquid inks, typically onto polymeric or paper substrates. Among available conductive fillers for use in electronic inks, carbon nanotubes (CNTs) have high conductivity, low density, processability at low temperatures, and intrinsic mechanical flexibility. However, the electrical conductivity of printed CNT structures has been limited by CNT quality and concentration, and by the need for nonconductive modifiers to make the ink stable and extrudable. This study introduces a polymer-free, printable aqueous CNT ink, and presents the relationships between printing resolution, ink rheology, and ink-substrate interactions. A model is constructed to predict printed feature sizes on impermeable substrates based on Wenzel wetting. Printed lines have conductivity up to 10,000 S/m. The lines are flexible, with < 5% change in DC resistance after 1,000 bending cycles, and <3% change in DC resistance with a bending radius down to 1 mm. Demonstrations focus on (i) conformality, via printing CNTs onto stickers that can be applied to curved surfaces, (ii) interactivity using a CNT-based button printed onto folded paper structure, and (iii) capacitive sensing of liquid wicking into the substrate itself. Facile integration of surface mount components on printed circuits is enabled by the intrinsic adhesion of the wet ink.