Do you want to publish a course? Click here

Strain effects on Phase-Filling Singularities in Highly Doped n-Type Ge

196   0   0.0 ( 0 )
 Added by Zhi-Gang Song
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, Chi Xu et al. predicted the phase-filling singularities (PFS) in the optical dielectric function (ODF) of the highly doped $n$-type Ge and confirmed in experiment the PFS associated $E_{1}+Delta_{1}$ transition by advanced textit{in situ} doping technology [Phys. Rev. Lett. 118, 267402 (2017)], but the strong overlap between $E_{1}$ and $E_{1}+Delta_{1}$ optical transitions made the PFS associated $E_{1}$ transition that occurs at the high doping concentration unobservable in their measurement. In this work, we investigate the PFS of the highly doped n-type Ge in the presence of the uniaxial and biaxial tensile strain along [100], [110] and [111] crystal orientation. Compared with the relaxed bulk Ge, the tensile strain along [100] increases the energy separation between the $E_{1}$ and $E_{1}+Delta_{1}$ transition, making it possible to reveal the PFS associated $E_{1}$ transition in optical measurement. Besides, the application of tensile strain along [110] and [111] offers the possibility of lowering the required doping concentration for the PFS to be observed, resulting in new additional features associated with $E_{1}+Delta_{1}$ transition at inequivalent $L$-valleys. These theoretical predications with more distinguishable optical transition features in the presence of the uniaxial and biaxial tensile strain can be more conveniently observed in experiment, providing new insights into the excited states in heavily doped semiconductors.



rate research

Read More

105 - A. Gassenq , S. Tardif , K.Guilloy 2016
Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.
82 - In Jun Park , Sohee Kwon , 2020
CrSb is a layered antiferromagnet (AFM) with perpendicular magnetic anisotropy, a high N{e}el temperature, and large spin-orbit coupling (SOC), which makes it interesting for AFM spintronic applications. To elucidate the various mechanisms of N{e}el vector control, the effects of strain, band filling, and electric field on the magnetic anisotropy energy (MAE) of bulk and thin-film CrSb are determined and analysed using density functional theory. The MAE of the bulk crystal is large (1.2 meV per unit cell). Due to the significant ionic nature of the Cr-Sb bond, finite slabs are strongly affected by end termination. Truncation of the bulk crystal to a thin film with one surface terminated with Cr and the other surface terminated with Sb breaks inversion symmetry, creates a large charge dipole and average electric field across the film, and breaks spin degeneracy, such that the thin film becomes a ferrimagnet. The MAE is reduced such that its sign can be switched with realistic strain, and the large SOC gives rise to an intrinsic voltage controlled magnetic anisotropy (VCMA). A slab terminated on both faces with Cr remains a compensated AFM, but with the compensation occurring nonlocally between mirror symmetric Cr pairs. In-plane alignment of the moments is preferred, the magnitude of the MAE remains large, similar to that of the bulk, and it is relatively insensitive to filling.
We report here an experimental and theoretical study on the magnetoresistance properties of heavily phosphorous doped germanium on the metallic side of the metal-nonmetal transition. An anomalous regime, formed by negative values of the magnetoresistance, was observed by performing low-temperature measurements and explained within the generalized Drude model, due to the many-body effects. It reveals a key mechanism behind the magnetoresistance properties at low temperatures and, therefore, constitutes a path to its manipulation in such materials of great interest in fundamental physics and technological applications
137 - C. Rauch 2012
Acceptor-type defects in highly n-type InN are probed using positron annihilation spectroscopy. Results are compared to Hall effect measurements and calculated electron mobilities. Based on this, self-compensation in n-type InN is studied and the microscopic origin of compensating and scattering centers in irradiated and Si-doped InN is discussed. We find significant compensation through negatively charged indium vacancy complexes as well as additional acceptor-type defects with no or small effective open volume, which act as scattering centers in highly n-type InN samples.
We achieved ohmic contacts down to 5 K on standard n-doped Ge samples by creating a strongly doped thin Ge layer between the metallic contacts and the Ge substrate. Thanks to the laser doping technique used, Gas Immersion Laser Doping, we could attain extremely large doping levels above the solubility limit, and thus reduce the metal/doped Ge contact resistance. We tested independently the influence of the doping concentration and doped layer thickness, and showed that the ohmic contact improves when increasing the doping level and is not affected when changing the doped thickness. Furthermore, we characterised the doped Ge/Ge contact, showing that at high doping its contact resistance is the dominant contribution to the total contact resistance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا