We determine primitive solutions to the equation $(x-r)^2 + x^2 + (x+r)^2 = y^n$ for $1 le r le 5,000$, making use of a factorization argument and the Primitive Divisors Theorem due to Bilu, Hanrot and Voutier.
In this paper we determine the perfect powers that are sums of three fifth powers in an arithmetic progression. More precisely, we completely solve the Diophantine equation $$ (x-d)^5 + x^5 + (x + d)^5 = z^n,~ngeq 2, $$ where $d,x,z in mathbb{Z}$ and $d = 2^a5^b$ with $a,bgeq 0$.
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher and Murty, we show that there are at least $X^{frac{1}{4} - epsilon}$ sign changes in each interval $[X, 2X]$ for $X gg 1$. This improves to $X^{frac{1}{2} - epsilon}$ many sign changes assuming the Generalized Lindel{o}f Hypothesis.
In the past two decades, many researchers have studied {it index $2$} Gauss sums, where the group generated by the characteristic $p$ of the underling finite field is of index $2$ in the unit group of ${mathbb Z}/m{mathbb Z}$ for the order $m$ of the multiplicative character involved. A complete solution to the problem of evaluating index $2$ Gauss sums was given by Yang and Xia~(2010). In particular, it is known that some nonzero integral powers of the Gauss sums in this case are in quadratic fields. On the other hand, Chowla~(1962), McEliece~(1974), Evans~(1977, 1981) and Aoki~(1997, 2004, 2012) studied {it pure} Gauss sums, some nonzero integral powers of which are in the field of rational numbers. In this paper, we study Gauss sums, some integral powers of which are in quadratic fields. This class of Gauss sums is a generalization of index $2$ Gauss sums and an extension of pure Gauss sums to quadratic fields.
In 2016, while studying restricted sums of integral squares, Sun posed the following conjecture: Every positive integer $n$ can be written as $x^2+y^2+z^2+w^2$ $(x,y,z,winmathbb{N}={0,1,cdots})$ with $x+3y$ a square. Meanwhile, he also conjectured that for each positive integer $n$ there exist integers $x,y,z,w$ such that $n=x^2+y^2+z^2+w^2$ and $x+3yin{4^k:kinmathbb{N}}$. In this paper, we confirm these conjectures via some arithmetic theory of ternary quadratic forms.
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.