Do you want to publish a course? Click here

Sums of four squares with a certain restriction

116   0   0.0 ( 0 )
 Added by Hai-Liang Wu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In 2016, while studying restricted sums of integral squares, Sun posed the following conjecture: Every positive integer $n$ can be written as $x^2+y^2+z^2+w^2$ $(x,y,z,winmathbb{N}={0,1,cdots})$ with $x+3y$ a square. Meanwhile, he also conjectured that for each positive integer $n$ there exist integers $x,y,z,w$ such that $n=x^2+y^2+z^2+w^2$ and $x+3yin{4^k:kinmathbb{N}}$. In this paper, we confirm these conjectures via some arithmetic theory of ternary quadratic forms.



rate research

Read More

When the sequences of squares of primes is coloured with $K$ colours, where $K geq 1$ is an integer, let $s(K)$ be the smallest integer such that each sufficiently large integer can be written as a sum of no more than $s(K)$ squares of primes, all of the same colour. We show that $s(K) ll K expleft(frac{(3log 2 + {rm o}(1))log K}{log log K}right)$ for $K geq 2$. This improves on $s(K) ll_{epsilon} K^{2 +epsilon}$, which is the best available upper bound for $s(K)$.
Recently, Ni and Pan proved a $q$-congruence on certain sums involving central $q$-binomial coefficients, which was conjectured by Guo. In this paper, we give a generalization of this $q$-congruence and confirm another $q$-congruence, also conjectured by Guo. Our proof uses Ni and Pans technique and a simple $q$-congruence observed by Guo and Schlosser.
We determine primitive solutions to the equation $(x-r)^2 + x^2 + (x+r)^2 = y^n$ for $1 le r le 5,000$, making use of a factorization argument and the Primitive Divisors Theorem due to Bilu, Hanrot and Voutier.
83 - David Lowry-Duda 2021
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher and Murty, we show that there are at least $X^{frac{1}{4} - epsilon}$ sign changes in each interval $[X, 2X]$ for $X gg 1$. This improves to $X^{frac{1}{2} - epsilon}$ many sign changes assuming the Generalized Lindel{o}f Hypothesis.
The Macaulay2 package SumsOfSquares decomposes polynomials as sums of squares. It is based on methods to rationalize sum-of-squares decompositions due to Parrilo and Peyrl. The package features a data type for sums-of-squares polynomials, support for external semidefinite programming solvers, and optimization over varieties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا