Do you want to publish a course? Click here

Nonparametric Bayesian estimation of multivariate Hawkes processes

75   0   0.0 ( 0 )
 Added by Vincent Rivoirard
 Publication date 2018
and research's language is English
 Authors Sophie Donnet




Ask ChatGPT about the research

This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First rates are derived for L1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. Numerical illustrations are then proposed with in mind applications for inferring functional connec-tivity graphs of neurons.



rate research

Read More

173 - Enno Mammen 2017
In this paper we consider multivariate Hawkes processes with baseline hazard and kernel functions that depend on time. This defines a class of locally stationary processes. We discuss estimation of the time-dependent baseline hazard and kernel functions based on a localized criterion. Theory on stationary Hawkes processes is extended to develop asymptotic theory for the estimator in the locally stationary model.
Bayesian methods are developed for the multivariate nonparametric regression problem where the domain is taken to be a compact Riemannian manifold. In terms of the latter, the underlying geometry of the manifold induces certain symmetries on the multivariate nonparametric regression function. The Bayesian approach then allows one to incorporate hierarchical Bayesian methods directly into the spectral structure, thus providing a symmetry-adaptive multivariate Bayesian function estimator. One can also diffuse away some prior information in which the limiting case is a smoothing spline on the manifold. This, together with the result that the smoothing spline solution obtains the minimax rate of convergence in the multivariate nonparametric regression problem, provides good frequentist properties for the Bayes estimators. An application to astronomy is included.
In this paper, a novel Bayesian nonparametric test for assessing multivariate normal models is presented. While there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts. The proposed approach is based on the use of the Dirichlet process and Mahalanobis distance. More precisely, the Mahalanobis distance is employed as a good technique to transform the $m$-variate problem into a univariate problem. Then the Dirichlet process is used as a prior on the distribution of the Mahalanobis distance. The concentration of the distribution of the distance between the posterior process and the chi-square distribution with $m$ degrees of freedom is compared to the concentration of the distribution of the distance between the prior process and the chi-square distribution with $m$ degrees of freedom via a relative belief ratio. The distance between the Dirichlet process and the chi-square distribution is established based on the Anderson-Darling distance. Key theoretical results of the approach are derived. The procedure is illustrated through several examples, in which the proposed approach shows excellent performance.
A Bayesian nonparametric estimator to entropy is proposed. The derivation of the new estimator relies on using the Dirichlet process and adapting the well-known frequentist estimators of Vasicek (1976) and Ebrahimi, Pflughoeft and Soofi (1994). Several theoretical properties, such as consistency, of the proposed estimator are obtained. The quality of the proposed estimator has been investigated through several examples, in which it exhibits excellent performance.
Locally stationary Hawkes processes have been introduced in order to generalise classical Hawkes processes away from stationarity by allowing for a time-varying second-order structure. This class of self-exciting point processes has recently attracted a lot of interest in applications in the life sciences (seismology, genomics, neuro-science,...), but also in the modelling of high-frequency financial data. In this contribution we provide a fully developed nonparametric estimation theory of both local mean density and local Bartlett spectra of a locally stationary Hawkes process. In particular we apply our kernel estimation of the spectrum localised both in time and frequency to two data sets of transaction times revealing pertinent features in the data that had not been made visible by classical non-localised approaches based on models with constant fertility functions over time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا