Do you want to publish a course? Click here

A Bayesian Nonparametric Estimation to Entropy

86   0   0.0 ( 0 )
 Added by Luai Al-Labadi Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A Bayesian nonparametric estimator to entropy is proposed. The derivation of the new estimator relies on using the Dirichlet process and adapting the well-known frequentist estimators of Vasicek (1976) and Ebrahimi, Pflughoeft and Soofi (1994). Several theoretical properties, such as consistency, of the proposed estimator are obtained. The quality of the proposed estimator has been investigated through several examples, in which it exhibits excellent performance.



rate research

Read More

74 - Sophie Donnet 2018
This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First rates are derived for L1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. Numerical illustrations are then proposed with in mind applications for inferring functional connec-tivity graphs of neurons.
In this paper, a novel Bayesian nonparametric test for assessing multivariate normal models is presented. While there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts. The proposed approach is based on the use of the Dirichlet process and Mahalanobis distance. More precisely, the Mahalanobis distance is employed as a good technique to transform the $m$-variate problem into a univariate problem. Then the Dirichlet process is used as a prior on the distribution of the Mahalanobis distance. The concentration of the distribution of the distance between the posterior process and the chi-square distribution with $m$ degrees of freedom is compared to the concentration of the distribution of the distance between the prior process and the chi-square distribution with $m$ degrees of freedom via a relative belief ratio. The distance between the Dirichlet process and the chi-square distribution is established based on the Anderson-Darling distance. Key theoretical results of the approach are derived. The procedure is illustrated through several examples, in which the proposed approach shows excellent performance.
Bayesian nonparametric statistics is an area of considerable research interest. While recently there has been an extensive concentration in developing Bayesian nonparametric procedures for model checking, the use of the Dirichlet process, in its simplest form, along with the Kullback-Leibler divergence is still an open problem. This is mainly attributed to the discreteness property of the Dirichlet process and that the Kullback-Leibler divergence between any discrete distribution and any continuous distribution is infinity. The approach proposed in this paper, which is based on incorporating the Dirichlet process, the Kullback-Leibler divergence and the relative belief ratio, is considered the first concrete solution to this issue. Applying the approach is simple and does not require obtaining a closed form of the relative belief ratio. A Monte Carlo study and real data examples show that the developed approach exhibits excellent performance.
173 - Enno Mammen 2017
In this paper we consider multivariate Hawkes processes with baseline hazard and kernel functions that depend on time. This defines a class of locally stationary processes. We discuss estimation of the time-dependent baseline hazard and kernel functions based on a localized criterion. Theory on stationary Hawkes processes is extended to develop asymptotic theory for the estimator in the locally stationary model.
Kernel-based nonparametric hazard rate estimation is considered with a special class of infinite-order kernels that achieves favorable bias and mean square error properties. A fully automatic and adaptive implementation of a density and hazard rate estimator is proposed for randomly right censored data. Careful selection of the bandwidth in the proposed estimators yields estimates that are more efficient in terms of overall mean squared error performance, and in some cases achieves a nearly parametric convergence rate. Additionally, rapidly converging bandwidth estimates are presented for use in second-order kernels to supplement such kernel-based methods in hazard rate estimation. Simulations illustrate the improved accuracy of the proposed estimator against other nonparametric estimators of the density and hazard function. A real data application is also presented on survival data from 13,166 breast carcinoma patients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا