Do you want to publish a course? Click here

Hybrid Collaborative Filtering with Autoencoders

87   0   0.0 ( 0 )
 Added by Florian Strub
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework.



rate research

Read More

Collaborative Filtering (CF) is one of the most used methods for Recommender System. Because of the Bayesian nature and nonlinearity, deep generative models, e.g. Variational Autoencoder (VAE), have been applied into CF task, and have achieved great performance. However, most VAE-based methods suffer from matrix sparsity and consider the prior of users latent factors to be the same, which leads to poor latent representations of users and items. Additionally, most existing methods model latent factors of users only and but not items, which makes them not be able to recommend items to a new user. To tackle these problems, we propose a Neural Variational Hybrid Collaborative Filtering, NVHCF. Specifically, we consider both the generative processes of users and items, and the prior of latent factors of users and items to be side informationspecific, which enables our model to alleviate matrix sparsity and learn better latent representations of users and items. For inference purpose, we derived a Stochastic Gradient Variational Bayes (SGVB) algorithm to analytically approximate the intractable distributions of latent factors of users and items. Experiments conducted on two large datasets have showed our methods significantly outperform the state-of-the-art CF methods, including the VAE-based methods.
Recommender systems are important and valuable tools for many personalized services. Collaborative Filtering (CF) algorithms -- among others -- are fundamental algorithms driving the underlying mechanism of personalized recommendation. Many of the traditional CF algorithms are designed based on the fundamental idea of mining or learning correlative patterns from data for matching, including memory-based methods such as user/item-based CF as well as learning-based methods such as matrix factorization and deep learning models. However, advancing from correlative learning to causal learning is an important problem, because causal/counterfactual modeling can help us to think outside of the observational data for user modeling and personalization. In this paper, we propose Causal Collaborative Filtering (CCF) -- a general framework for modeling causality in collaborative filtering and recommendation. We first provide a unified causal view of CF and mathematically show that many of the traditional CF algorithms are actually special cases of CCF under simplified causal graphs. We then propose a conditional intervention approach for $do$-calculus so that we can estimate the causal relations based on observational data. Finally, we further propose a general counterfactual constrained learning framework for estimating the user-item preferences. Experiments are conducted on two types of real-world datasets -- traditional and randomized trial data -- and results show that our framework can improve the recommendation performance of many CF algorithms.
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender systems. These methods often make recommendations based on the learned user and item embeddings. However, we found that they do not perform well wit sparse user-item graphs which are quite common in real-world recommendations. Therefore, in this work, we introduce a novel perspective to build GNN-based CF methods for recommendations which leads to the proposed framework Localized Graph Collaborative Filtering (LGCF). One key advantage of LGCF is that it does not need to learn embeddings for each user and item, which is challenging in sparse scenarios. Alternatively, LGCF aims at encoding useful CF information into a localized graph and making recommendations based on such graph. Extensive experiments on various datasets validate the effectiveness of LGCF especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides complementary information to the embedding-based CF model which can be utilized to boost recommendation performance.
With increasing and extensive use of electronic health records, clinicians are often under time pressure when they need to retrieve important information efficiently among large amounts of patients health records in clinics. While a search function can be a useful alternative to browsing through a patients record, it is cumbersome for clinicians to search repeatedly for the same or similar information on similar patients. Under such circumstances, there is a critical need to build effective recommender systems that can generate accurate search term recommendations for clinicians. In this manuscript, we developed a hybrid collaborative filtering model using patients encounter and search term information to recommend the next search terms for clinicians to retrieve important information fast in clinics. For each patient, the model will recommend terms that either have high co-occurrence frequencies with his/her most recent ICD codes or are highly relevant to the most recent search terms on this patient. We have conducted comprehensive experiments to evaluate the proposed model, and the experimental results demonstrate that our model can outperform all the state-of-the-art baseline methods for top-N search term recommendation on different datasets.
We extend variational autoencoders (VAEs) to collaborative filtering for implicit feedback. This non-linear probabilistic model enables us to go beyond the limited modeling capacity of linear factor models which still largely dominate collaborative filtering research.We introduce a generative model with multinomial likelihood and use Bayesian inference for parameter estimation. Despite widespread use in language modeling and economics, the multinomial likelihood receives less attention in the recommender systems literature. We introduce a different regularization parameter for the learning objective, which proves to be crucial for achieving competitive performance. Remarkably, there is an efficient way to tune the parameter using annealing. The resulting model and learning algorithm has information-theoretic connections to maximum entropy discrimination and the information bottleneck principle. Empirically, we show that the proposed approach significantly outperforms several state-of-the-art baselines, including two recently-proposed neural network approaches, on several real-world datasets. We also provide extended experiments comparing the multinomial likelihood with other commonly used likelihood functions in the latent factor collaborative filtering literature and show favorable results. Finally, we identify the pros and cons of employing a principled Bayesian inference approach and characterize settings where it provides the most significant improvements.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا