Do you want to publish a course? Click here

The mid-infrared properties and gas content of active galaxies over large look-back times

75   0   0.0 ( 0 )
 Added by Stephen Curran Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Upon an expansion of all of the searches for redshifted HI 21-cm absorption (0.0021 < z 5.19), we update recent results regarding the detection of 21-cm in the non-local Universe. Specifically, we confirm that photo-ionisation of the gas is the mostly likely cause of the low detection rate at high redshift, in addition to finding that at z < 0.1 there may also be a decrease in the detection rate, which we suggest is due to the dilution of the absorption strength by 21-cm emission. By assuming that associated and intervening absorbers have similar cosmological mass densities, we find evidence that the spin temperature of the gas evolves with redshift, consistent with heating by ultra-violet photons. From the near--infrared (3.4, 4.6 and 12 micron) colours, we see that radio galaxies become more quasar-like in their activity with increasing redshift. We also find that the non-detection of 21-cm absorption at high redshift is not likely to be due to the selection of gas-poor ellipticals, in addition to a strong correlation between the ionising photon rate and the [3.4] - [4.6] colour, indicating that the UV photons arise from AGN activity. Like previous studies, we find a correlation between the detection of 21-cm absorption and the [4.6] - [12] colour, which is a tracer of star-forming activity. However, this only applies at the lowest redshifts (z < 0.1), the range considered by the other studies.



rate research

Read More

129 - G.E. Magdis 2013
We study the mid- to far-IR properties of a 24um-selected flux-limited sample (S24 > 5mJy) of 154 intermediate redshift (<z>~0.15), infrared luminous galaxies, drawn from the 5MUSES survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the HerMES program, we derived robust total infrared luminosity (LIR) and dust mass (Md) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total infrared emission of galaxies with weak 6.2um PAH emission (EW<0.2um) is dominated by AGN activity, while for galaxies with EW>0.2um more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500um Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8um luminosity ratio, IR8 = LIRL8, and the strength of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHs emission, and not by variations in the 5-15um mid-IR continuum emission. Using the [NeIII]/[NeII] line ratio as a tracer of the hardness of the radiation field, we confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8 values and higher dust-mass-weighted luminosities (LIR/Md), the latter being a proxy for the dust temperature (Td). We argue that these trends originate either from variations in the environment of the star-forming regions or are caused by variations in the age of the starburst. Finally, we provide scaling relations that will allow estimating LIR, based on single-band observations with the mid-infrared instrument, on board the upcoming JWST.
56 - Daniel Stern 2004
Mid-infrared photometry provides a robust technique for identifying active galaxies. While the ultraviolet to mid-infrared continuum of normal galaxies is dominated by the composite stellar black body curve and peaks at approximately 1.6 microns, the ultraviolet to mid-infrared continuum of active galaxies is dominated by a power law. Consequently, with sufficient wavelength baseline, one can easily distinguish AGN from stellar populations. Mirroring the tendency of AGN to be bluer than galaxies in the ultraviolet, where galaxies (and stars) sample the blue, rising portion of stellar spectra, AGN tend to be redder than galaxies in the mid-infrared, where galaxies sample the red, falling portion of the stellar spectra. We report on Spitzer Space Telescope mid-infrared colors, derived from the IRAC Shallow Survey, of nearly 10,000 spectroscopically identified sources from the AGN and Galaxy Evolution Survey. Based on this spectroscopic sample, we find that simple mid-infrared color criteria provide remarkably robust separation of active galaxies from normal galaxies and Galactic stars, with over 80% completeness and less than 20% contamination. Considering only broad-lined AGN, these mid-infrared color criteria identify over 90% of spectroscopically identified quasars and Seyfert 1s. Applying these color criteria to the full imaging data set, we discuss the implied surface density of AGN and find evidence for a large population of optically obscured active galaxies.
256 - Yang Gao , Ting Xiao , Cheng Li 2019
We present CO(J=1-0) and/or CO(J=2-1) spectroscopy for 31 galaxies selected from the ongoing MaNGA survey, obtained with multiple telescopes. This sample is combined with CO observations from the literature to study the correlation of the CO luminosities ($L_{rm CO(1-0)}$) with the mid-infrared luminosities at 12 ($L_{12 mu m}$) and 22 $mu$m ($L_{rm 22 mu m}$), as well as the dependence of the residuals on a variety of galaxy properties. The correlation with $L_{rm 12 mu m}$ is tighter and more linear, but galaxies with relatively low stellar masses and blue colors fall significantly below the mean $L_{rm CO(1-0)}-L_{rm 12mu m}$ relation. We propose a new estimator of the CO(1-0) luminosity (and thus the total molecular gas mass) that is a linear combination of three parameters: $L_{rm 12 mu m}$, $M_ast$ and $g-r$. We show that, with a scatter of only 0.18 dex in log $(L_{rm CO(1-0)})$, this estimator provides unbiased estimates for galaxies of different properties and types. An immediate application of this estimator to a compiled sample of galaxies with only CO(J=2-1) observations yields a distribution of the CO(J=2-1) to CO(J=1-0) luminosity ratios ($R21$) that agrees well with the distribution of real observations, in terms of both the median and the shape. Application of our estimator to the current MaNGA sample reveals a gas-poor population of galaxies that are predominantly early-type and show no correlation between molecular gas-to-stellar mass ratio and star formation rate, in contrast to gas-rich galaxies. We also provide alternative estimators with similar scatters, based on $r$ and/or $z$ band luminosities instead of $M_ast$. These estimators serve as cheap and convenient $M_{rm mol}$ proxies to be potentially applied to large samples of galaxies, thus allowing statistical studies of gas-related processes of galaxies.
261 - Guinevere Kauffmann 2017
The goal of this paper is to investigate the physical nature of galaxies in the redshift range $0.02<z<0.15$ that have strong excess emission at mid-IR wavelengths and to determine whether they host a population of accreting black holes that cannot be identified using optical emission lines. We show that at fixed stellar mass $M_*$ and $D_n(4000)$, the distribution of [3.4]-[4.6] $mu$m (WISE W1-W2 band) colours is sharply peaked, with a long tail to much redder W1-W2 colours. We introduce a procedure to pull out the red outlier population based on a combination of three stellar population diagnostics. When compared with optically-selected AGN, red outliers are more likely to be found in massive galaxies, and they tend to have lower stellar mass densities, younger stellar ages and higher dust content than optically-selected AGN hosts. They are twice as likely to be detected at radio wavelengths. We examine W1-W2 colour profiles for a subset of the nearest, reddest outliers and find that most are not centrally peaked, indicating that the hot dust emission is spread throughout the galaxy. We find that radio luminosity is the quantity that is most predictive of a redder central W1-W2 colour. Radio-loud galaxies with centrally concentrated hot dust emission are almost always morphologically disturbed, with compact, unresolved emission at 1.4 Ghz. Eighty percent of such systems are identifiable as AGN using optical emission line diagnostics.
We present a detailed study of a high-redshift iron low-ionization broad absorption line (FeLoBAL) quasar (SDSS1214 at $z = 1.046$), including new interferometric $^{12}$CO $J$=2-1 observations, optical through far-infrared photometry, and mid-infrared spectroscopy. The CO line is well-fit by a single Gaussian centered 40 kms$^{-1}$ away from the systemic velocity and implies a total molecular gas mass of $M_textrm{gas} = 7.3 times 10^{10} textrm{M}_odot$. The infrared SED requires three components: an active galactic nucleus (AGN) torus, an AGN polar dust component, and a starburst. The starburst dominates the infrared emission with a luminosity of log($L_textrm{SB}[textrm{L}_odot]) = 12.91^{+0.02}_{-0.02}$, implying a star formation rate of about 2000 $textrm{M}_{odot}$yr$^{-1}$, the highest known among FeLoBAL quasars. The AGN torus and polar dust components are less luminous, at log($L_textrm{AGN}[textrm{L}_odot]) = 12.36^{+0.14}_{-0.15}$ and log($L_textrm{dust}[textrm{L}_odot]) = 11.75^{+0.26}_{-0.46}$, respectively. If all of the molecular gas is used to fuel the ongoing star formation, then the lower limit on the subsequent duration of the starburst is 40 Myr. We do not find conclusive evidence that the AGN is affecting the CO gas reservoir. The properties of SDSS1214 are consistent with it representing the endpoint of an obscured starburst transitioning through a LoBAL phase to that of a classical quasar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا