Do you want to publish a course? Click here

Tsallis Fits to pT Spectra and Multiple Hard Scattering in pp Collisions at the LHC

198   0   0.0 ( 0 )
 Added by Cheuk-Yin Wong
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Phenomenological Tsallis fits to the CMS, ATLAS, and ALICE transverse momentum spectra of hadrons for pp collisions at LHC were recently found to extend over a large range of the transverse momentum. We investigate whether the few degrees of freedom in the Tsallis parametrization may arise from the relativistic parton-parton hard-scattering and related processes. The effects of the multiple hard-scattering and parton showering processes on the power law are discussed. We find empirically that whereas the transverse spectra of both hadrons and jets exhibit power-law behavior of 1/pT^n at high pT, the power indices n for hadrons are systematically greater than those for jets, for which n~4-5.



rate research

Read More

Motivated by the good Tsallis fits to the high-pT spectra in pp collisions at the LHC, we study the relativistic hard-scattering model and obtain an approximate analytical expression for the differential hard-scattering cross section at eta ~ 0. The power-law behaviour of the transverse spectra, in the form of dsigma/dpT^2 propto 1/pT^n, gives a power index n in the range of 4.5-5.5 for jet production as predicted by pQCD, after the dependencies of the structure functions and the running coupling constant are properly taken into account. The power indices for hadron production n are slightly greater than those for jet production.
Phenomenological Tsallis fits to the CMS and ATLAS transverse spectra of charged particles were found to extend for p_T from 0.5 to 181 GeV in pp collisions at LHC at sqrt{s}=7 TeV, and for p_T from 0.5 to 31 GeV at sqrt{s}=0.9 TeV. The simplicity of the Tsallis parametrization and the large range of the fitting transverse momentum raise questions on the physical meaning of the degrees of freedom that enter into the Tsallis distribution or q-statistics.
72 - S. Sharma , M. Kaur 2018
In recent years the Tsallis statistics is gaining popularity in describing charged particle produc- tion and their properties, in particular pT spectra and the multiplicities in high energy particle collisions. Motivated by its success, an analysis of the LHC data of proton-proton collisions at ener- gies ranging from 0.9 TeV to 7 TeV in different rapidity windows for charged particle multiplicities has been done. A comparative analysis is performed in terms of the Tsallis distribution, the Gamma distribution and the shifted-Gamma distribution. An interesting observation on the inapplicability of these distributions at sqrt{s}=7 TeV in the lower rapidity windows is intriguing. The non-extensive nature of the Tsallis statistics is studied by determining the entropic index and its energy depen- dence. The analysis is extrapolated to predict the multiplicity distribution at sqrt{s}=14 TeV for one rapidity window, |y| < 1.5 with the Tsallis function.
This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.
Hadron inclusive spectra in pp collisions are analyzed within the modified quark-gluon string model including both the longitudinal and transverse motion of quarks in the proton in the wide region of initial energies. The self-consistent analysis shows that the experimental data on the inclusive spectra of light hadrons like pions and kaons at ISR energies can be satisfactorily described at transverse momenta not larger than 1-2 GeV/c. We discuss some difficulties to apply this model at energies above the ISR and suggest to include the distribution of gluons in the proton unintegrated over the internal transverse momentum. It leads to an increase in the inclusive spectra of hadrons and allows us to extend the satisfactory description of the data in the central rapidity region at energies higher than ISR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا