No Arabic abstract
Conventional imaging systems comprise large and expensive optical components which successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations and current multi-wavelength and narrowband achromatic metasurfaces cannot support full visible spectum imaging (400-700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of NA ~ 0.45 which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function which enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems with simpler optics.
We propose and experimentally demonstrate a high-efficiency single-pixel imaging (SPI) scheme by integrating time-correlated single-photon counting (TCSPC) with time-division multiplexing to acquire full-color images at extremely low light level. This SPI scheme uses a digital micromirror device to modulate a sequence of laser pulses with preset delays to achieve three-color structured illumination, then employs a photomultiplier tube into the TCSPC module to achieve photon-counting detection. By exploiting the time-resolved capabilities of TCSPC, we demodulate the spectrum-image-encoded signals, and then reconstruct high-quality full-color images in a single-round of measurement. Based on this scheme, the strategies such as single-step measurement, high-speed projection, and undersampling can further improve the imaging efficiency.
Diffraction calculations, such as the angular spectrum method, and Fresnel diffractions, are used for calculating scalar light propagation. The calculations are used in wide-ranging optics fields: for example, computer generated holograms (CGHs), digital holography, diffractive optical elements, microscopy, image encryption and decryption, three-dimensional analysis for optical devices and so on. However, increasing demands made by large-scale diffraction calculations have rendered the computational power of recent computers insufficient. We have already developed a numerical library for diffraction calculations using a graphic processing unit (GPU), which was named the GWO library. However, this GWO library is not user-friendly, since it is based on C language and was also run only on a GPU. In this paper, we develop a new C++ class library for diffraction and CGH calculations, which is referred as to a CWO++ library, running on a CPU and GPU. We also describe the structure, performance, and usage examples of the CWO++ library.
Fluorescence microscopy is a powerful tool to measure molecular specific information in biological samples. However, most biological tissues are highly heterogeneous because of refractive index (RI) differences and thus degrade the signal-to-noise ratio of fluorescence images. At the same time, RI is an intrinsic optical property of label free biological tissues that quantitatively relates to cell morphology, mass, and stiffness. Conventional imaging techniques measure fluorescence and RI of biological samples separately. Here, we develop a new computational hybrid imaging method based on a multi-slice model of multiple scattering that reconstructs 3D fluorescence and 3D RI from the same dataset of fluorescence images. Our method not only bridges the gap between fluorescence and RI imaging and provides a panoramic view of the biological samples, but also can digitally correct multiple scattering effect of fluorescence images from the reconstructed 3D RI. Computational hybrid imaging opens a unique avenue beyond conventional imaging techniques.
We investigate the nonlinear optical process of third-harmonic generation in the thus far unexplored regime of focusing the pump light from a full solid angle, where the nonlinear process is dominantly driven by a standing dipole-wave. We elucidate the influence of the focal volume and the pump intensity on the number of frequency-tripled photons by varying the solid angle from which the pump light is focused, finding good agreement between the experiments and numerical calculations. As a consequence of focusing the pump light to volumes much smaller than a wavelength cubed the Gouy phase does not limit the yield of frequency-converted photons. This is in stark contrast to the paraxial regime. We believe that our findings are generic to many other nonlinear optical processes when the pump light is focused from a full solid angle.
Three-dimensional elements, with refractive index distribution structured at sub-wavelength scale, provide an expansive optical design space that can be harnessed for demonstrating multi-functional free-space optical devices. Here we present 3D dielectric elements, designed to be placed on top of the pixels of image sensors, that sort and focus light based on its color and polarization with efficiency significantly surpassing 2D absorptive and diffractive filters. The devices are designed via iterative gradient-based optimization to account for multiple target functions while ensuring compatibility with existing nanofabrication processes, and experimentally validated using a scaled device that operates at microwave frequencies. This approach combines arbitrary functions into a single compact element even where there is no known equivalent in bulk optics, enabling novel integrated photonic applications.