No Arabic abstract
Three-dimensional elements, with refractive index distribution structured at sub-wavelength scale, provide an expansive optical design space that can be harnessed for demonstrating multi-functional free-space optical devices. Here we present 3D dielectric elements, designed to be placed on top of the pixels of image sensors, that sort and focus light based on its color and polarization with efficiency significantly surpassing 2D absorptive and diffractive filters. The devices are designed via iterative gradient-based optimization to account for multiple target functions while ensuring compatibility with existing nanofabrication processes, and experimentally validated using a scaled device that operates at microwave frequencies. This approach combines arbitrary functions into a single compact element even where there is no known equivalent in bulk optics, enabling novel integrated photonic applications.
Extended depth of focus (EDOF) optics can enable lower complexity optical imaging systems when compared to active focusing solutions. With existing EDOF optics, however, it is difficult to achieve high resolution and high collection efficiency simultaneously. The subwavelength pitch of meta-optics enables engineering very steep phase gradients, and thus meta-optics can achieve both a large physical aperture and high numerical aperture. Here, we demonstrate a fast (f/1.75) EDOF meta-optic operating at visible wavelengths, with an aperture of 2 mm and focal range from 3.5 mm to 14.5 mm (286 diopters to 69 diopters), which is a 250 elongation of the depth of focus relative to a standard lens. Depth-independent performance is shown by imaging at a range of finite conjugates, with a minimum spatial resolution of ~9.84{mu}m (50.8 cycles/mm). We also demonstrate operation of a directly integrated EDOF meta-optic camera module to evaluate imaging at multiple object distances, a functionality which would otherwise require a varifocal lens.
Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading and wavelength-limited resolution restrict further developments. Plasmonic colors emerging from resonant interactions between light and metallic nanostructures can overcome these restrictions. With dynamic characteristics enabled by functional materials, dynamic plasmonic coloration may find a variety of applications in display technologies. In this review, we elucidate basic concepts for dynamic plasmonic color generation and highlight recent advances. In particular, we devote our review to a selection of dynamic controls endowed by functional materials, including magnesium, liquid crystals, electrochromic polymers, and phase change materials. We also discuss their performance in view of potential applications in current display technologies.
Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multifunctional and broadband applications. Three-dimensional metastructures can provide the necessary degrees of freedom for advanced applications, while maintaining minimal thickness. This work explores 3D mechanically reconfigurable devices that perform focusing, spectral demultiplexing, and polarization sorting based on mechanical configuration. As proof of concept, a rotatable device, auxetic device, and a shearing-based device are designed with adjoint-based topology optimization, 3D-printed, and measured at microwave frequencies (7.6-11.6 GHz) in an anechoic chamber.
Conventional imaging systems comprise large and expensive optical components which successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations and current multi-wavelength and narrowband achromatic metasurfaces cannot support full visible spectum imaging (400-700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of NA ~ 0.45 which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function which enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems with simpler optics.
Structural colors generated due to light scattering from static all-dielectric metasurfaces have successfully enabled high-resolution, high-saturation and wide-gamut color printing applications. Despite recent advances, most demonstrations of these structure-dependent colors lack post-fabrication tunability that hinders their applicability for front-end dynamic display technologies. Phase-change materials (PCMs), with significant contrast of their optical properties between their amorphous and crystalline states, have demonstrated promising potentials in reconfigurable nanophotonics. Herein, we leverage a tunable all-dielectric reflective metasurface made of a newly emerged class of low-loss optical PCMs with superb characteristics, i.e., antimony trisulphide (Sb$_2$S$_3$), antimony triselenide (Sb$_2$Se$_3$), and binary germanium-doped selenide (GeSe$_3$), to realize switchable, high-saturation, high-efficiency and high-resolution structural colors. Having polarization sensitive building blocks, the presented metasurface can generate two different colors when illuminated by two orthogonally polarized incident beams. Such degrees of freedom (i.e., structural state and polarization) enable a single reconfigurable metasurface with fixed geometrical parameters to generate four distinct wide-gamut colors suitable for a wide range of applications, including tunable full-color printing and displays, information encryption, and anti-counterfeiting.