Do you want to publish a course? Click here

Collateral Unchained: Rehypothecation networks, concentration and systemic effects

43   0   0.0 ( 0 )
 Added by Paolo Barucca
 Publication date 2018
  fields Financial
and research's language is English




Ask ChatGPT about the research

We study how network structure affects the dynamics of collateral in presence of rehypothecation. We build a simple model wherein banks interact via chains of repo contracts and use their proprietary collateral or re-use the collateral obtained by other banks via reverse repos. In this framework, we show that total collateral volume and its velocity are affected by characteristics of the network like the length of rehypothecation chains, the presence or not of chains having a cyclic structure, the direction of collateral flows, the density of the network. In addition, we show that structures where collateral flows are concentrated among few nodes (like in core-periphery networks) allow large increases in collateral volumes already with small network density. Furthermore, we introduce in the model collateral hoarding rates determined according to a Value-at-Risk (VaR) criterion, and we then study the emergence of collateral hoarding cascades in different networks. Our results highlight that network structures with highly concentrated collateral flows are also more exposed to large collateral hoarding cascades following local shocks. These networks are therefore characterized by a trade-off between liquidity and systemic risk.



rate research

Read More

We propose to derive deviation measures through the Minkowski gauge of a given set of acceptable positions. We show that, given a suitable acceptance set, any positive homogeneous deviation measure can be accommodated in our framework. In doing so, we provide a new interpretation for such measures, namely, that they quantify how much one must shrink or deleverage a position for it to become acceptable. In particular, the Minkowski Deviation of a set which is convex, stable under scalar addition, and radially bounded at non-constants, is a generalized deviation measure. Furthermore, we explore the relations existing between mathematical and financial properties attributable to an acceptance set, and the corresponding properties of the induced measure. Hence, we fill the gap that is the lack of an acceptance set for deviation measures. Dual characterizations in terms of polar sets and support functionals are provided.
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a Knightian setting, where a family of probability measures replaces the single reference probability and is then applied to value financial positions. Diametrically, our construction of Value&Risk measures is based on the selection of a basket of claims to test the reliability of models. We compare a random payoff $X$ with a given class of derivatives written on $X$ , and use these derivatives to textquotedblleft testtextquotedblright the pricing measures. We further introduce and study a general class of Value&Risk measures $% R(p,X,mathbb{P})$ that describes the additional capital that is required to make $X$ acceptable under a probability $mathbb{P}$ and given the initial price $p$ paid to acquire $X$.
108 - M. Andrecut 2017
We discuss the systemic risk implied by the interbank exposures reconstructed with the maximum entropy method. The maximum entropy method severely underestimates the risk of interbank contagion by assuming a fully connected network, while in reality the structure of the interbank network is sparsely connected. Here, we formulate an algorithm for sparse network reconstruction, and we show numerically that it provides a more reliable estimation of the systemic risk.
We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
The aim of this paper is to define the market-consistent multi-period value of an insurance liability cash flow in discrete time subject to repeated capital requirements, and explore its properties. In line with current regulatory frameworks, the approach presented is based on a hypothetical transfer of the original liability and a replicating portfolio to an empty corporate entity whose owner must comply with repeated one-period capital requirements but has the option to terminate the ownership at any time. The value of the liability is defined as the no-arbitrage price of the cash flow to the policyholders, optimally stopped from the owners perspective, taking capital requirements into account. The value is computed as the solution to a sequence of coupled optimal stopping problems or, equivalently, as the solution to a backward recursion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا