No Arabic abstract
The aim of this paper is to define the market-consistent multi-period value of an insurance liability cash flow in discrete time subject to repeated capital requirements, and explore its properties. In line with current regulatory frameworks, the approach presented is based on a hypothetical transfer of the original liability and a replicating portfolio to an empty corporate entity whose owner must comply with repeated one-period capital requirements but has the option to terminate the ownership at any time. The value of the liability is defined as the no-arbitrage price of the cash flow to the policyholders, optimally stopped from the owners perspective, taking capital requirements into account. The value is computed as the solution to a sequence of coupled optimal stopping problems or, equivalently, as the solution to a backward recursion.
We study market-consistent valuation of liability cash flows motivated by current regulatory frameworks for the insurance industry. Building on the theory on multiple-prior optimal stopping we propose a valuation functional with sound economic properties that applies to any liability cash flow. Whereas a replicable cash flow is assigned the market value of the replicating portfolio, a cash flow that is not fully replicable is assigned a value which is the sum of the market value of a replicating portfolio and a positive margin. The margin is a direct consequence of considering a hypothetical transfer of the liability cash flow from an insurance company to an empty corporate entity set up with the sole purpose to manage the liability run-off, subject to repeated capital requirements, and considering the valuation of this entity from the owners perspective taking model uncertainty into account. Aiming for applicability, we consider a detailed insurance application and explain how the optimisation problems over sets of probability measures can be cast as simpler optimisation problems over parameter sets corresponding to parameterised density processes appearing in applications.
The strengthening of capital requirements has induced banks and traders to consider charging a so called capital valuation adjustment (KVA) to the clients in OTC transactions. This roughly corresponds to charge the clients ex-ante the profit requirement that is asked to the trading desk. In the following we try to delineate a possible way to assess the impact of capital constraints in the valuation of a deal. We resort to an optimisation stemming from an indifference pricing approach, and we study both the linear problem from the point of view of the whole bank and the non-linear problem given by the viewpoint of shareholders. We also consider the case where one optimises the median rather than the mean statistics of the profit and loss distribution.
Capital allocation principles are used in various contexts in which a risk capital or a cost of an aggregate position has to be allocated among its constituent parts. We study capital allocation principles in a performance measurement framework. We introduce the notation of suitability of allocations for performance measurement and show under different assumptions on the involved reward and risk measures that there exist suitable allocation methods. The existence of certain suitable allocation principles generally is given under rather strict assumptions on the underlying risk measure. Therefore we show, with a reformulated definition of suitability and in a slightly modified setting, that there is a known suitable allocation principle that does not require any properties of the underlying risk measure. Additionally we extend a previous characterization result from the literature from a mean-risk to a reward-risk setting. Formulations of this theory are also possible in a game theoretic setting.
We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
To a large extent, the systemic importance of financial institutions is related to the topology of financial liability networks. In this work we reconstruct and analyze the - to our knowledge - largest financial network that has been studied up to now. This financial liability network consists of 51,980 firms and 796 banks. It represents 80.2% of total liabilities towards banks by firms and all interbank liabilities from the entire Austrian banking system. We find that firms contribute to systemic risk in similar ways as banks do. In particular, we identify several medium-sized banks and firms with total assets below 1 bln. EUR that are systemically important in the entire financial network. We show that the notion of systemically important financial institutions (SIFIs) or global and domestic systemically important banks (G-SIBs or D-SIBs) can be straightforwardly extended to firms. We find that firms introduce slightly more systemic risk than banks. In Austria in 2008, the total systemic risk of the interbank network amounts to only 29% of the total systemic risk of the entire financial network, consisting of firms and banks.