Do you want to publish a course? Click here

Ultrametric properties for valuation spaces of normal surface singularities

150   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $L$ be a fixed branch -- that is, an irreducible germ of curve -- on a normal surface singularity $X$. If $A,B$ are two other branches, define $u_L(A,B) := dfrac{(L cdot A) : (L cdot B)}{A cdot B}$, where $A cdot B$ denotes the intersection number of $A$ and $B$. Call $X$ arborescent if all the dual graphs of its resolutions are trees. In a previous paper, the first three authors extended a 1985 theorem of P{l}oski by proving that whenever $X$ is arborescent, the function $u_L$ is an ultrametric on the set of branches on $X$ different from $L$. In the present paper we prove that, conversely, if $u_L$ is an ultrametric, then $X$ is arborescent. We also show that for any normal surface singularity, one may find arbitrarily large sets of branches on $X$, characterized uniquely in terms of the topology of the resolutions of their sum, in restriction to which $u_L$ is still an ultrametric. Moreover, we describe the associated tree in terms of the dual graphs of such resolutions. Then we extend our setting by allowing $L$ to be an arbitrary semivaluation on $X$ and by defining $u_L$ on a suitable space of semivaluations. We prove that any such function is again an ultrametric if and only if $X$ is arborescent, and without any restriction on $X$ we exhibit special subspaces of the space of semivaluations in restriction to which $u_L$ is still an ultrametric.



rate research

Read More

We obtain several new characterizations of ultrametric spaces in terms of roundness, generalized roundness, strict p-negative type, and p-polygonal equalities (p > 0). This allows new insight into the isometric embedding of ultrametric spaces into Euclidean spaces. We also consider roundness properties additive metric spaces which are not ultrametric.
In this paper we generalize the definitions of singularities of pairs and multiplier ideal sheaves to pairs on arbitrary normal varieties, without any assumption on the variety being Q-Gorenstein or the pair being log Q-Gorenstein. The main features of the theory extend to this setting in a natural way.
We show, in this first part, that the maximal number of singular points of a quartic surface $X subset mathbb{P}^3_K$ defined over an algebraically closed field $K$ of characteristic $2$ is at most $18$. We produce examples with $14$ singular points, and show that, under several geometric assumptions ($mathfrak S_4$-symmetry, or behaviour of the Gauss map, or structure of tangent cone at one of the singular points $P$ , separability/inseparability of the projection with centre $P$), we obtain better upper bounds.
74 - Jun-Muk Hwang 2018
We study the singularities of Legendrian subvarieties of contact manifolds in the complex-analytic category and prove two rigidity results. The first one is that Legendrian singularities with reduced tangent cones are contactomorphically biholomorphic to their tangent cones. This result is partly motivated by a problem on Fano contact manifolds. The second result is the deformation-rigidity of normal Legendrian singularities, meaning that any holomorphic family of normal Legendrian singularities is trivial, up to contactomorphic biholomorphisms of germs. Both results are proved by exploiting the relation between infinitesimal contactomorphisms and holomorphic sections of the natural line bundle on the contact manifold.
We give a version in characteristic $p>0$ of Mumfords theorem characterizing a smooth complex germ of surface $(X,x)$ by the triviality of the topological fundamental group of $U=Xsetminus {x}$. This note relies on discussions the authors had during the Christmas break 2009/10 in Ivry. They have been written down by Hel`ene in the night when Eckart died, as a despaired sign of love.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا