Do you want to publish a course? Click here

On-chip excitation of single germanium-vacancies in nanodiamonds embedded in plasmonic waveguides

206   0   0.0 ( 0 )
 Added by Hamidreza Siampour
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monolithic integration of quantum emitters in nanoscale plasmonic circuitry requires low-loss plasmonic configurations capable of confining light well below the diffraction limit. We demonstrate on-chip remote excitation of nanodiamond-embedded single quantum emitters by plasmonic modes of dielectric ridges atop colloidal silver crystals. The nanodiamonds are produced to incorporate single germanium-vacancy (GeV) centers, providing bright, spectrally narrow and stable single-photon sources suitable for highly integrated circuits. Using electron-beam lithography with hydrogen silsesquioxane (HSQ) resist, dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) are fabricated on single crystalline silver plates so as to contain those of spin-casted nanodiamonds that are found to feature appropriate single GeV centers. The low-loss plasmonic configuration enabled the 532 nm pump laser light to propagate on-chip in the DLSPPW and reach to an embedded nanodiamond where a single GeV center is incorporated. The remote GeV emitter is thereby excited and coupled to spatially confined DLSPPW modes with an outstanding figure-of-merit of 180 due to a ~6-fold Purcell enhancement, ~56% coupling efficiency and ~33 {mu}m transmission length, revealing the potential of our approach for on-chip realization of nanoscale functional quantum devices.



rate research

Read More

Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.
High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP) modes narrowing NV centers broad emission bandwidth with enhanced coupling efficiency. The cavity resonator consists of two distributed Bragg mirrors that are built at opposite sides of the coupled NV emitter and are integrated with a dielectric-loaded SPP waveguide (DLSPPW), using electron-beam lithography of hydrogen silsesquioxane resist deposited on silver-coated silicon substrates. A quality factor of ~ 70 for the cavity (full width at half maximum ~ 10 nm) with full tunability of the resonance wavelength is demonstrated. An up to 42-fold decay rate enhancement of the spontaneous emission at the cavity resonance is achieved, indicating high DLSPPW mode confinement.
190 - Disheng Chen , Zhao Mu , Yu Zhou 2019
Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the fluorescence. Here we demonstrate that a controlled gating using a weak non-resonant laser, the resonant excitation can be recovered and amplified for single germanium vacancies (GeVs). Employing the gated resonance excitation, we achieve optically stable resonance fluorescence of GeV centers. Our results are pivotal for the deployment of diamond color centers as reliable building blocks for scalable solid state quantum networks.
The recently established paradigm of higher-order topological states of matter has shown that not only, as previously thought, edge and surface states but also states localised to corners can have robust and exotic properties. Here we report on the experimental realisation of novel corner states made out of classical light in three-dimensional photonic structures inscribed in glass samples using femtosecond (fs) laser technology. By creating and analysing waveguide arrays forming two-dimensional breathing kagome lattices in various sample geometries, we establish this as a platform for corner states exhibiting a remarkable degree of flexibility and control. In each sample geometry we measure eigenmodes that are localised at the corners in a finite frequency range in complete analogy with a theoretical model of the breathing kagome. Here, the measurements reveal that light can be fractionalised, corresponding to simultaneous localisation to each corner of a triangular sample, even in the presence of defects. The fabrication method applied in this work exposes the advantage of using fs-laser writing for producing compact three-dimensional devices thus paving the way for technological applications by simulating novel higher-order states of matter.
Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures a deterministic and scalable fabrication method for such structures is desirable. Here we demonstrate deterministic and scalable top-down fabrication of metal wires onto preselected nitrogen vacancy centers in nanodiamonds using clean room nano-fabrication methods. We observe a life-time reduction of the emitter emission that is consistent with earlier proof-of-principle experiments that used non-deterministic fabrication methods. This result indicates that top-down fabrication is a promising technique for processing future devices featuring single photon emitters and plasmonic nanostructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا