Do you want to publish a course? Click here

On $sigma$-quasinormal subgroups of finite groups

115   0   0.0 ( 0 )
 Added by Alexander Skiba
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $G$ be a finite group and $sigma ={sigma_{i} | iin I}$ some partition of the set of all primes $Bbb{P}$, that is, $sigma ={sigma_{i} | iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_{i}$ and $sigma_{i}cap sigma_{j}= emptyset $ for all $i e j$. We say that $G$ is $sigma$-primary if $G$ is a $sigma _{i}$-group for some $i$. A subgroup $A$ of $G$ is said to be: ${sigma}$-subnormal in $G$ if there is a subgroup chain $A=A_{0} leq A_{1} leq cdots leq A_{n}=G$ such that either $A_{i-1}trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $sigma$-primary for all $i=1, ldots, n$, modular in $G$ if the following conditions hold: (i) $langle X, A cap Z rangle=langle X, A rangle cap Z$ for all $X leq G, Z leq G$ such that $X leq Z$, and (ii) $langle A, Y cap Z rangle=langle A, Y rangle cap Z$ for all $Y leq G, Z leq G$ such that $A leq Z$. In this paper, a subgroup $A$ of $G$ is called $sigma$-quasinormal in $G$ if $L$ is modular and ${sigma}$-subnormal in $G$. We study $sigma$-quasinormal subgroups of $G$. In particular, we prove that if a subgroup $H$ of $G$ is $sigma$-quasinormal in $G$, then for every chief factor $H/K$ of $G$ between $H^{G}$ and $H_{G}$ the semidirect product $(H/K)rtimes (G/C_{G}(H/K))$ is $sigma$-primary.



rate research

Read More

109 - Alexander N. Skiba 2020
Let $G$ be a finite group and $sigma$ a partition of the set of all? primes $Bbb{P}$, that is, $sigma ={sigma_i mid iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_i$ and $sigma_icap sigma_j= emptyset $ for all $i e j$. If $n$ is an integer, we write $sigma(n)={sigma_i mid sigma_{i}cap pi (n) e emptyset }$ and $sigma (G)=sigma (|G|)$. We call a graph $Gamma$ with the set of all vertices $V(Gamma)=sigma (G)$ ($G e 1$) a $sigma$-arithmetic graph of $G$, and we associate with $G e 1$ the following three directed $sigma$-arithmetic graphs: (1) the $sigma$-Hawkes graph $Gamma_{Hsigma }(G)$ of $G$ is a $sigma$-arithmetic graph of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{Hsigma }(G))$ if $sigma_jin sigma (G/F_{{sigma_i}}(G))$; (2) the $sigma$-Hall graph $Gamma_{sigma Hal}(G)$ of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{sigma Hal}(G))$ if for some Hall $sigma_i$-subgroup $H$ of $G$ we have $sigma_jin sigma (N_{G}(H)/HC_{G}(H))$; (3) the $sigma$-Vasilev-Murashko graph $Gamma_{{mathfrak{N}_sigma }}(G)$ of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{{mathfrak{N}_sigma}}(G))$ if for some ${mathfrak{N}_{sigma }}$-critical subgroup $H$ of $G$ we have $sigma_i in sigma (H)$ and $sigma_jin sigma (H/F_{{sigma_i}}(H))$. In this paper, we study the structure of $G$ depending on the properties of these three graphs of $G$.
Following Isaacs (see [Isa08, p. 94]), we call a normal subgroup N of a finite group G large, if $C_G(N) leq N$, so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroups in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups.
Let $w$ be a multilinear commutator word. In the present paper we describe recent results that show that if $G$ is a profinite group in which all $w$-values are contained in a union of finitely (or in some cases countably) many subgroups with a prescribed property, then the verbal subgroup $w(G)$ has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.
191 - Wenbin Guo , Evgeny Vdovin 2017
Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u_p(G)$ for every $Hleq G$ to almost simple groups. This result substantially generalizes the previous result by G. Navarro and also provides an alternative proof for the Navarro theorem.
158 - Koji Nuida 2012
It has been known that the centralizer $Z_W(W_I)$ of a parabolic subgroup $W_I$ of a Coxeter group $W$ is a split extension of a naturally defined reflection subgroup by a subgroup defined by a 2-cell complex $mathcal{Y}$. In this paper, we study the structure of $Z_W(W_I)$ further and show that, if $I$ has no irreducible components of type $A_n$ with $2 leq n < infty$, then every element of finite irreducible components of the inner factor is fixed by a natural action of the fundamental group of $mathcal{Y}$. This property has an application to the isomorphism problem in Coxeter groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا