Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u_p(G)$ for every $Hleq G$ to almost simple groups. This result substantially generalizes the previous result by G. Navarro and also provides an alternative proof for the Navarro theorem.
We define and study supercharacters of the classical finite unipotent groups of symplectic and orthogonal types (over any finite field of odd characteristic). We show how supercharacters for groups of those types can be obtained by restricting the supercharacter theory of the finite unitriangular group, and prove that supercharacters are orthogonal and provide a partition of the set of all irreducible characters. We also describe all irreducible characters of maximum degree in terms of the root system, and show how they can be obtained as constituents of particular supercharacters.
We define the superclasses for a classical finite unipotent group $U$ of type $B_{n}(q)$, $C_{n}(q)$, or $D_{n}(q)$, and show that, together with the supercharacters defined in a previous paper, they form a supercharacter theory. In particular, we prove that the supercharacters take a constant value on each superclass, and evaluate this value. As a consequence, we obtain a factorization of any superclass as a product of elementary superclasses. In addition, we also define the space of superclass functions, and prove that it is spanned by the supercharacters. As as consequence, we (re)obtain the decomposition of the regular character as an orthogonal linear combination of supercharacters. Finally, we define the supercharacter table of $U$, and prove various orthogonality relations for supercharacters (similar to the well-known orthogonality relations for irreducible characters).
Following Isaacs (see [Isa08, p. 94]), we call a normal subgroup N of a finite group G large, if $C_G(N) leq N$, so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroups in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups.
Recent results of Qu and Tuarnauceanu describe explicitly the finite p-groups which are not elementary abelian and have the property that the number of their subgroups is maximal among p-groups of a given order. We complement these results from the bottom level up by determining completely the non-cyclic finite p-groups whose number of subgroups among p-groups of a given order is minimal.
Suppose that p is an odd prime and G is a finite group having no normal non-trivial p-subgroup. We show that if a is an automorphism of G of p-power order centralizing a Sylow p-group of G, then a is inner. This answers a conjecture of Gross. An easy corollary is that if p is an odd prime and P is a Sylow p-subgroup of G, then the center of P is contained in the generalized Fitting subgroup of G. We give two proofs both requiring the classification of finite simple groups. For p=2, the result fails but Glauberman in 1968 proved that the square of a is inner. This answered a problem of Kourovka posed in 1999.