Do you want to publish a course? Click here

A Kodaira Vanishing Theorem for Noncommutative Kahler Structures

152   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Using the framework of noncommutative Kahler structures, we generalise to the noncommutative setting the celebrated vanishing theorem of Kodaira for positive line bundles. The result is established under the assumption that the associated Dirac-Dolbeault operator of the line bundle is diagonalisable, an assumption that is shown to always hold in the quantum homogeneous space case. The general theory is then applied to the covariant Kahler structure of the Heckenberger-Kolb calculus of the quantum Grassmannians allowing us to prove a direct q-deformation of the classical Grassmannian Bott-Borel-Weil theorem for positive line bundles.



rate research

Read More

After an overview of noncommutative differential calculus, we construct parts of it explicitly and explain why this construction agrees with a fuller version obtained from the theory of operads.
We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendiecks notion of differential operator on a commutative algebra in such a way that derivations of the commutative algebra are replaced by DDer(A), the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A), a certain `Fock space associated to any noncommutative algebra A in a functorial way. The corresponding algebra D(F(A)), of differential operators, is filtered and gr D(F(A)), the associated graded algebra, is commutative in some `twisted sense. The resulting double Poisson structure on gr D(F(A)) is closely related to the one introduced by Van den Bergh. Specifically, we prove that gr D(F(A))=F(T_A(DDer(A)), provided A is smooth. It is crucial for our construction that the Fock space F(A) carries an extra-structure of a wheelgebra, a new notion closely related to the notion of a wheeled PROP. There are also notions of Lie wheelgebras, and so on. In that language, D(F(A)) becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on DDer(A) gives rise to a second order (wheeled) differential operator, a noncommutative analogue of the BV-operator.
179 - M.V. Bondarko 2007
The paper is suspended. The reason: as was noted by prof. H. Esnault, Theorem 2.1.1 of the previous version (as well as the related Theorem 6.1.1 of http://arxiv.org/PS_cache/math/pdf/9908/9908037v2.pdf of D. Arapura and P. Sastry) is wrong unless one assumes H to be a generic hyperplane section. Hence the proofs of all results starting from 2.3 contain gaps. The author hopes to correct this (somehow) in a future version. At least, most of the results follow from certain standard motivic conjectures (see part 1 of Remark 3.2.4 in the previous version). If the author would not find a way to prove Theorems 2.3.1 and 2.3.2 (without 2.1.1), then in the next version of the preprint the results of section 4 will be deduced from certain conjectures; certainly this is not a very exiting result.
We establish the analogue of the Friedlander-Mazur conjecture for Tehs reduced Lawson homology groups of real varieties, which says that the reduced Lawson homology of a real quasi-projective variety $X$ vanishes in homological degrees larger than the dimension of $X$ in all weights. As an application we obtain a vanishing of homotopy groups of the mod-2 topological groups of averaged cycles and a characterization in a range of indices of the motivic cohomology of a real variety as homotopy groups of the complex of averaged equidimensional cycles. We also establish an equivariant Poincare duality between equivariant Friedlander-Walker real morphic cohomology and dos Santos real Lawson homology. We use this together with an equivariant extension of the mod-2 Beilinson-Lichtenbaum conjecture to compute some real Lawson homology groups in terms of Bredon cohomology.
Using inversion of adjunction, we deduce from Nadels theorem a vanishing property for ideals sheaves on projective varieties, a special case of which recovers a result due to Bertram--Ein--Lazarsfeld. This enables us to generalize to a large class of projective schemes certain bounds on Castelnuovo--Mumford regularity previously obtained by Bertram--Ein--Lazarsfeld in the smooth case and by Chardin--Ulrich for locally complete intersection varieties with rational singularities. Our results are tested on several examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا