Do you want to publish a course? Click here

A vanishing theorem for log canonical pairs

348   0   0.0 ( 0 )
 Added by Tommaso de Fernex
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Using inversion of adjunction, we deduce from Nadels theorem a vanishing property for ideals sheaves on projective varieties, a special case of which recovers a result due to Bertram--Ein--Lazarsfeld. This enables us to generalize to a large class of projective schemes certain bounds on Castelnuovo--Mumford regularity previously obtained by Bertram--Ein--Lazarsfeld in the smooth case and by Chardin--Ulrich for locally complete intersection varieties with rational singularities. Our results are tested on several examples.



rate research

Read More

109 - Osamu Fujino 2020
We establish a relative spannedness for log canonical pairs, which is a generalization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta--Wisniewski. Moreover, we establish a generalization for quasi-log canonical pairs.
81 - Jingjun Han , Wenfei Liu 2018
The nonvanishing conjecture for projective log canonical pairs plays a key role in the minimal model program of higher dimensional algebraic geometry. The numerical nonvanishing conjecture considered in this paper is a weaker version of the usual nonvanishing conjecture, but valid in the more general setting of generalized log canonical pairs. We confirm it in dimension two. Under some necessary conditions we obtain effecti
Let $X$ be a closed equidimensional local complete intersection subscheme of a smooth projective scheme $Y$ over a field, and let $X_t$ denote the $t$-th thickening of $X$ in $Y$. Fix an ample line bundle $mathcal{O}_Y(1)$ on $Y$. We prove the following asymptotic formulation of the Kodaira vanishing theorem: there exists an integer $c$, such that for all integers $t geqslant 1$, the cohomology group $H^k(X_t,mathcal{O}_{X_t}(j))$ vanishes for $k < dim X$ and $j < -ct$. Note that there are no restrictions on the characteristic of the field, or on the singular locus of $X$. We also construct examples illustrating that a linear bound is indeed the best possible, and that the constant $c$ is unbounded, even in a fixed dimension.
95 - Osamu Fujino 2020
We establish a kind of subadjunction formula for quasi-log canonical pairs. As an application, we prove that a connected projective quasi-log canonical pair whose quasi-log canonical class is anti-ample is simply connected and rationally chain connected. We also supplement the cone theorem for quasi-log canonical pairs. More precisely, we prove that every negative extremal ray is spanned by a rational curve. Finally, we treat the notion of Mori hyperbolicity for quasi-log canonical pairs.
The log canonical ring of a projective plt pair with the Kodaira dimension two is finitely generated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا