Do you want to publish a course? Click here

Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuation and electron tunneling

84   0   0.0 ( 0 )
 Added by Jing-Tao Lu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within $2 ; textrm{nm}$, where the contributions of Coulomb fluctuation and electrons tunneling are comparable. Using the nonequilibrium Greens function method in the $G_{0}W_{0}$ approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.



rate research

Read More

We theoretically investigate the heat transfer between two metals across a vacuum gap in extreme near-field regime by quantifying the relative contribution of electrons, phonons and photons. We show that electrons play a dominant role in the heat transfer between two metals at subnanometric distance subject to a temperature gradient. Moreover, we demonstrate that this effect is dramatically amplified in the presence of an applied bias voltage. These results could pave the way to novel strategies for thermal management and energy conversion in extreme near-field regime.
Quantum defects have shown to play an essential role for the non-radiative recombination in metal halide perovskites (MHPs). Nonetheless, the processes of charge transfer-assisted by defects are still ambiguous. Herein, we theoretically study the non-radiative multiphonon processes among different types of quantum defects in MHPs using Markvart model for the induced mechanisms of electron-electron and electron-phonon interactions, respectively. We find that charge carrier can transfer between the neighboring levels of the same type shallow defects by multiphonon processes, but it will be distinctly suppressed with the increasing of the defect depth. For the non-radiation multiphonon transitions between donor- and acceptor-like defects, the processes are very fast and independence of the defect depth, which provide a possible explanation for the blinking phenomena of photoluminescence spectra in recent experiment. We also discuss the temperature dependence of these multiphonon processes and find that their variational trends depend on the comparison of Huang-Rhys factor with the emitted phonon number. These theoretical results fill some gaps of defect-assisted non-radiative processes in the perovskites materials.
We calculate the Casimir force between two parallel ideal metal plates when there is an intervening chiral medium present. Making use of methods of quantum statistical mechanics we show how the force can be found in a simple and compact way. The expression for the force is in agreement with that obtained recently by Q.-D. Jiang and F. Wilczek [Phys. Rev. B {bf 99}, 125403 (2019)], in their case with the use of Green function methods.
55 - Marc P. Roosli 2020
We study the magneto-conductance of a $1.4~mathrm{mu m}$-wide quantum dot in the fractional quantum Hall regime. For a filling factor $approx 2/3$ and $gtrsim 1/3$ in the quantum dot the observed Coulomb resonances show a periodic modulation in magnetic field. This indicates a non-trivial reconstruction of the 2/3 fractional quantum Hall state in the quantum dot. We present a model for the charge stability diagram of the system assuming two compressible regions separated by an incompressible stripe of filling factor $2/3$ and $1/3$, respectively. From the dependence of the magnetic field period on total magnetic field we construct the zero-field charge density distribution in the quantum dot. The tunneling between the two compressible regions exhibits fractional Coulomb blockade. For both filling factor regions, we extract a fractional charge $e^*/e = 0.32 pm 0.03$ by comparing to measurements at filling factor 2. With their close relation to quantum Hall Fabry-P{e}rot interferometers, our investigations on quantum dots in the fractional quantum Hall regime extend and complement interference experiments investigating the nature of anyonic fractional quantum Hall quasiparticles.
81 - C. L. Yang 2002
Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished through a Zener tunneling mechanism, and make a significant contribution to the magnetoresistance. A remarkable oscillation effect in weak field magnetoresistance has been observed in high-mobility 2DEGs in GaAs-AlGa$_{0.3}$As$_{0.7}$ heterostructures, and can be well explained by the Zener mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا