Do you want to publish a course? Click here

Multi-pseudo Regularized Label for Generated Data in Person Re-Identification

85   0   0.0 ( 0 )
 Added by Yan Huang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Sufficient training data normally is required to train deeply learned models. However, due to the expensive manual process for labelling large number of images, the amount of available training data is always limited. To produce more data for training a deep network, Generative Adversarial Network (GAN) can be used to generate artificial sample data. However, the generated data usually does not have annotation labels. To solve this problem, in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated data. With MpRL, the generated data will be used as the supplementary of real training data to train a deep neural network in a semi-supervised learning fashion. To build the corresponding relationship between the real data and generated data, MpRL assigns each generated data a proper virtual label which reflects the likelihood of the affiliation of the generated data to pre-defined training classes in the real data domain. Unlike the traditional label which usually is a single integral number, the virtual label proposed in this work is a set of weight-based values each individual of which is a number in (0,1] called multi-pseudo label and reflects the degree of relation between each generated data to every pre-defined class of real data. A comprehensive evaluation is carried out by adopting two state-of-the-art convolutional neural networks (CNNs) in our experiments to verify the effectiveness of MpRL. Experiments demonstrate that by assigning MpRL to generated data, we can further improve the person re-ID performance on five re-ID datasets, i.e., Market-1501, DukeMTMC-reID, CUHK03, VIPeR, and CUHK01. The proposed method obtains +6.29%, +6.30%, +5.58%, +5.84%, and +3.48% improvements in rank-1 accuracy over a strong CNN baseline on the five datasets respectively, and outperforms state-of-the-art methods.

rate research

Read More

Although unsupervised person re-identification (Re-ID) has drawn increasing research attention recently, it remains challenging to learn discriminative features without annotations across disjoint camera views. In this paper, we address the unsupervised person Re-ID with a conceptually novel yet simple framework, termed as Multi-label Learning guided self-paced Clustering (MLC). MLC mainly learns discriminative features with three crucial modules, namely a multi-scale network, a multi-label learning module, and a self-paced clustering module. Specifically, the multi-scale network generates multi-granularity person features in both global and local views. The multi-label learning module leverages a memory feature bank and assigns each image with a multi-label vector based on the similarities between the image and feature bank. After multi-label training for several epochs, the self-paced clustering joins in training and assigns a pseudo label for each image. The benefits of our MLC come from three aspects: i) the multi-scale person features for better similarity measurement, ii) the multi-label assignment based on the whole dataset ensures that every image can be trained, and iii) the self-paced clustering removes some noisy samples for better feature learning. Extensive experiments on three popular large-scale Re-ID benchmarks demonstrate that our MLC outperforms previous state-of-the-art methods and significantly improves the performance of unsupervised person Re-ID.
Unsupervised Domain Adaptive (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations. Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion. However, offline interaction between these two steps may allow noisy pseudo labels to substantially hinder the capability of the model. In this paper, we propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning. Specifically, a label transfer algorithm simultaneously uses pseudo labels to train the data while refining the pseudo labels as an online clustering algorithm. It treats the online label refinery problem as an optimal transport problem, which explores the minimum cost for assigning M samples to N pseudo labels. More importantly, we introduce a group-aware strategy to assign implicit attribute group IDs to samples. The combination of the online label refining algorithm and the group-aware strategy can better correct the noisy pseudo label in an online fashion and narrow down the search space of the target identity. The effectiveness of the proposed GLT is demonstrated by the experimental results (Rank-1 accuracy) for Market1501$to$DukeMTMC (82.0%) and DukeMTMC$to$Market1501 (92.2%), remarkably closing the gap between unsupervised and supervised performance on person re-identification.
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid person matching network (PPMN) to obtain correspondence representations. These correspondence representations are fused to perform the re-identification task. Further, the proposed framework is optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art literature, especially on the rank-1 recognition rate.
Traditional person re-identification (ReID) methods typically represent person images as real-valued features, which makes ReID inefficient when the gallery set is extremely large. Recently, some hashing methods have been proposed to make ReID more efficient. However, these hashing methods will deteriorate the accuracy in general, and the efficiency of them is still not high enough. In this paper, we propose a novel hashing method, called deep multi-index hashing (DMIH), to improve both efficiency and accuracy for ReID. DMIH seamlessly integrates multi-index hashing and multi-branch based networks into the same framework. Furthermore, a novel block-wise multi-index hashing table construction approach and a search-aware multi-index (SAMI) loss are proposed in DMIH to improve the search efficiency. Experiments on three widely used datasets show that DMIH can outperform other state-of-the-art baselines, including both hashing methods and real-valued methods, in terms of both efficiency and accuracy.
In recent years, supervised person re-identification (re-ID) models have received increasing studies. However, these models trained on the source domain always suffer dramatic performance drop when tested on an unseen domain. Existing methods are primary to use pseudo labels to alleviate this problem. One of the most successful approaches predicts neighbors of each unlabeled image and then uses them to train the model. Although the predicted neighbors are credible, they always miss some hard positive samples, which may hinder the model from discovering important discriminative information of the unlabeled domain. In this paper, to complement these low recall neighbor pseudo labels, we propose a joint learning framework to learn better feature embeddings via high precision neighbor pseudo labels and high recall group pseudo labels. The group pseudo labels are generated by transitively merging neighbors of different samples into a group to achieve higher recall. However, the merging operation may cause subgroups in the group due to imperfect neighbor predictions. To utilize these group pseudo labels properly, we propose using a similarity-aggregating loss to mitigate the influence of these subgroups by pulling the input sample towards the most similar embeddings. Extensive experiments on three large-scale datasets demonstrate that our method can achieve state-of-the-art performance under the unsupervised domain adaptation re-ID setting.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا