Do you want to publish a course? Click here

Group-aware Label Transfer for Domain Adaptive Person Re-identification

304   0   0.0 ( 0 )
 Added by Kecheng Zheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Unsupervised Domain Adaptive (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations. Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion. However, offline interaction between these two steps may allow noisy pseudo labels to substantially hinder the capability of the model. In this paper, we propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning. Specifically, a label transfer algorithm simultaneously uses pseudo labels to train the data while refining the pseudo labels as an online clustering algorithm. It treats the online label refinery problem as an optimal transport problem, which explores the minimum cost for assigning M samples to N pseudo labels. More importantly, we introduce a group-aware strategy to assign implicit attribute group IDs to samples. The combination of the online label refining algorithm and the group-aware strategy can better correct the noisy pseudo label in an online fashion and narrow down the search space of the target identity. The effectiveness of the proposed GLT is demonstrated by the experimental results (Rank-1 accuracy) for Market1501$to$DukeMTMC (82.0%) and DukeMTMC$to$Market1501 (92.2%), remarkably closing the gap between unsupervised and supervised performance on person re-identification.



rate research

Read More

Person Re-Identification (re-id) is a challenging task in computer vision, especially when there are limited training data from multiple camera views. In this paper, we pro- pose a deep learning based person re-identification method by transferring knowledge of mid-level attribute features and high-level classification features. Building on the idea that identity classification, attribute recognition and re- identification share the same mid-level semantic representations, they can be trained sequentially by fine-tuning one based on another. In our framework, we train identity classification and attribute recognition tasks from deep Convolutional Neural Network (dCNN) to learn person information. The information can be transferred to the person re-id task and improves its accuracy by a large margin. Further- more, a Long Short Term Memory(LSTM) based Recurrent Neural Network (RNN) component is extended by a spacial gate. This component is used in the re-id model to pay attention to certain spacial parts in each recurrent unit. Experimental results show that our method achieves 78.3% of rank-1 recognition accuracy on the CUHK03 benchmark.
112 - Yongxing Dai , Jun Liu , Yan Bai 2020
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data. To handle this problem, some recent works adopt clustering algorithms to off-line generate pseudo labels, which can then be used as the supervision signal for on-line feature learning in the target domain. However, the off-line generated labels often contain lots of noise that significantly hinders the discriminability of the on-line learned features, and thus limits the final UDA re-ID performance. To this end, we propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase, to alternatively boost the label purity and feature discriminability in the target domain for more reliable re-ID. Specifically, at the off-line phase, a new hierarchical clustering scheme is proposed, which selects representative prototypes for every coarse cluster. Thus, labels can be effectively refined by using the inherent hierarchical information of person images. Besides, at the on-line phase, we propose an instant memory spread-out (IM-spread-out) regularization, that takes advantage of the proposed instant memory bank to store sample features of the entire dataset and enable spread-out feature learning over the entire training data instantly. Our Dual-Refinement method reduces the influence of noisy labels and refines the learned features within the alternative training process. Experiments demonstrate that our method outperforms the state-of-the-art methods by a large margin.
Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which trains a model on source domains that generalizes well on unseen target domain without model updating. In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID. It describes unseen target domain as a combination of the known source ones, and explicitly learns domain-specific representation with target distribution to improve the models generalization by a meta-learning pipeline. Specifically, AdsNorm utilizes batch normalization layers to collect individual source domains characteristics, and maps source domains into a shared latent space by using these characteristics, where the domain relevance is measured by a distance function of different domain-specific normalization statistics and features. At the testing stage, AdsNorm projects images from unseen target domain into the same latent space, and adaptively integrates the domain-specific features carrying the source distributions by domain relevance for learning more generalizable aggregated representation on unseen target domain. Considering that target domain is unavailable during training, a meta-learning algorithm combined with a customized relation loss is proposed to optimize an effective and efficient ensemble model. Extensive experiments demonstrate that AdsNorm outperforms the state-of-the-art methods. The code is available at: https://github.com/hzphzp/AdsNorm.
Domain adaptive person Re-Identification (ReID) is challenging owing to the domain gap and shortage of annotations on target scenarios. To handle those two challenges, this paper proposes a coupling optimization method including the Domain-Invariant Mapping (DIM) method and the Global-Local distance Optimization (GLO), respectively. Different from previous methods that transfer knowledge in two stages, the DIM achieves a more efficient one-stage knowledge transfer by mapping images in labeled and unlabeled datasets to a shared feature space. GLO is designed to train the ReID model with unsupervised setting on the target domain. Instead of relying on existing optimization strategies designed for supervised training, GLO involves more images in distance optimization, and achieves better robustness to noisy label prediction. GLO also integrates distance optimizations in both the global dataset and local training batch, thus exhibits better training efficiency. Extensive experiments on three large-scale datasets, i.e., Market-1501, DukeMTMC-reID, and MSMT17, show that our coupling optimization outperforms state-of-the-art methods by a large margin. Our method also works well in unsupervised training, and even outperforms several recent domain adaptive methods.
Domain adaptive person re-identification (re-ID) is a challenging task, especially when person identities in target domains are unknown. Existing methods attempt to address this challenge by transferring image styles or aligning feature distributions across domains, whereas the rich unlabeled samples in target domains are not sufficiently exploited. This paper presents a novel augmented discriminative clustering (AD-Cluster) technique that estimates and augments person clusters in target domains and enforces the discrimination ability of re-ID models with the augmented clusters. AD-Cluster is trained by iterative density-based clustering, adaptive sample augmentation, and discriminative feature learning. It learns an image generator and a feature encoder which aim to maximize the intra-cluster diversity in the sample space and minimize the intra-cluster distance in the feature space in an adversarial min-max manner. Finally, AD-Cluster increases the diversity of sample clusters and improves the discrimination capability of re-ID models greatly. Extensive experiments over Market-1501 and DukeMTMC-reID show that AD-Cluster outperforms the state-of-the-art with large margins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا