Do you want to publish a course? Click here

Unsupervised Person Re-Identification with Multi-Label Learning Guided Self-Paced Clustering

64   0   0.0 ( 0 )
 Added by Qing Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although unsupervised person re-identification (Re-ID) has drawn increasing research attention recently, it remains challenging to learn discriminative features without annotations across disjoint camera views. In this paper, we address the unsupervised person Re-ID with a conceptually novel yet simple framework, termed as Multi-label Learning guided self-paced Clustering (MLC). MLC mainly learns discriminative features with three crucial modules, namely a multi-scale network, a multi-label learning module, and a self-paced clustering module. Specifically, the multi-scale network generates multi-granularity person features in both global and local views. The multi-label learning module leverages a memory feature bank and assigns each image with a multi-label vector based on the similarities between the image and feature bank. After multi-label training for several epochs, the self-paced clustering joins in training and assigns a pseudo label for each image. The benefits of our MLC come from three aspects: i) the multi-scale person features for better similarity measurement, ii) the multi-label assignment based on the whole dataset ensures that every image can be trained, and iii) the self-paced clustering removes some noisy samples for better feature learning. Extensive experiments on three popular large-scale Re-ID benchmarks demonstrate that our MLC outperforms previous state-of-the-art methods and significantly improves the performance of unsupervised person Re-ID.

rate research

Read More

Unsupervised person re-identification (re-ID) has become an important topic due to its potential to resolve the scalability problem of supervised re-ID models. However, existing methods simply utilize pseudo labels from clustering for supervision and thus have not yet fully explored the semantic information in data itself, which limits representation capabilities of learned models. To address this problem, we design a pretext task for unsupervised re-ID by learning visual consistency from still images and temporal consistency during training process, such that the clustering network can separate the images into semantic clusters automatically. Specifically, the pretext task learns semantically meaningful representations by maximizing the agreement between two encoded views of the same image via a consistency loss in latent space. Meanwhile, we optimize the model by grouping the two encoded views into same cluster, thus enhancing the visual consistency between views. Experiments on Market-1501, DukeMTMC-reID and MSMT17 datasets demonstrate that our proposed approach outperforms the state-of-the-art methods by large margins.
Person re-identification (re-ID) requires one to match images of the same person across camera views. As a more challenging task, semi-supervised re-ID tackles the problem that only a number of identities in training data are fully labeled, while the remaining are unlabeled. Assuming that such labeled and unlabeled training data share disjoint identity labels, we propose a novel framework of Semantics-Guided Clustering with Deep Progressive Learning (SGC-DPL) to jointly exploit the above data. By advancing the proposed Semantics-Guided Affinity Propagation (SG-AP), we are able to assign pseudo-labels to selected unlabeled data in a progressive fashion, under the semantics guidance from the labeled ones. As a result, our approach is able to augment the labeled training data in the semi-supervised setting. Our experiments on two large-scale person re-ID benchmarks demonstrate the superiority of our SGC-DPL over state-of-the-art methods across different degrees of supervision. In extension, the generalization ability of our SGC-DPL is also verified in other tasks like vehicle re-ID or image retrieval with the semi-supervised setting.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
Person re-identification (re-id) aims to match the same person from images taken across multiple cameras. Most existing person re-id methods generally require a large amount of identity labeled data to act as discriminative guideline for representation learning. Difficulty in manually collecting identity labeled data leads to poor adaptability in practical scenarios. To overcome this problem, we propose an unsupervised center-based clustering approach capable of progressively learning and exploiting the underlying re-id discriminative information from temporal continuity within a camera. We call our framework Temporal Continuity based Unsupervised Learning (TCUL). Specifically, TCUL simultaneously does center based clustering of unlabeled (target) dataset and fine-tunes a convolutional neural network (CNN) pre-trained on irrelevant labeled (source) dataset to enhance discriminative capability of the CNN for the target dataset. Furthermore, it exploits temporally continuous nature of images within-camera jointly with spatial similarity of feature maps across-cameras to generate reliable pseudo-labels for training a re-identification model. As the training progresses, number of reliable samples keep on growing adaptively which in turn boosts representation ability of the CNN. Extensive experiments on three large-scale person re-id benchmark datasets are conducted to compare our framework with state-of-the-art techniques, which demonstrate superiority of TCUL over existing methods.
Existing person re-identification (re-id) methods mostly rely on supervised model learning from a large set of person identity labelled training data per domain. This limits their scalability and usability in large scale deployments. In this work, we present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data in an unsupervised manner. This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views. Importantly, our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data. This differs from a handful of existing alternative methods that often assume the existence of true matches and balanced tracklet samples per identity class. This is achieved by formulating a data adaptive image-to-tracklet selective matching loss function explored in a multi-camera multi-task deep learning model structure. Extensive comparative experiments demonstrate that the proposed STL model surpasses significantly the state-of-the-art unsupervised learning and one-shot learning re-id methods on three large tracklet person re-id benchmarks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا