Do you want to publish a course? Click here

The Delivery of Water During Terrestrial Planet Formation

337   0   0.0 ( 0 )
 Added by David O'Brien
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. We review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.



rate research

Read More

140 - H. Genda , H. Kobayashi , 2015
In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into the terrestrial planet region, which may form debris disks with observable infrared excesses. Indeed, tens of warm debris disks around young solar-type stars have been observed. Here, we quantitatively estimate the total mass of ejected materials during the giant impact stages. We found that $sim$0.4 times the Earths mass is ejected in total throughout the giant impact stage. Ejected materials are ground down by collisional cascade until micron-sized grains are blown out by radiation pressure. The depletion timescale of these ejected materials is determined primarily by the mass of the largest body among them. We conducted high-resolution simulations of giant impacts to accurately obtain the mass of the largest ejected body. We then calculated the evolution of the debris disks produced by a series of giant impacts and depleted by collisional cascades to obtain the infrared excess evolution of the debris disks. We found that the infrared excess is almost always higher than the stellar infrared flux throughout the giant impact stage ($sim$100 Myr) and is sometimes $sim$10 times higher immediately after a giant impact. Therefore, giant impact stages would explain the infrared excess from most observed warm debris disks. The observed fraction of stars with warm debris disks indicates that the formation probability of our solar system-like terrestrial planets is approximately 10%.
From modeling the evolution of disks of planetesimals under the influence of planets, it has been shown that the mass of water delivered to the Earth from beyond Jupiters orbit could be comparable to the mass of terrestrial oceans. A considerable portion of the water could have been delivered to the Earths embryo, when its mass was smaller than the current mass of the Earth. While the Earths embryo mass was growing to half the current mass of the Earth, the mass of water delivered to the embryo could be near 30% of the total amount of water delivered to the Earth from the feeding zone of Jupiter and Saturn. Water of the terrestrial oceans could be a result of mixing the water from several sources with higher and lower D/H ratios. The mass of water delivered to Venus from beyond Jupiters orbit was almost the same as that for the Earth, if normalized to unit mass of the planet. The analogous per-unit mass of water delivered to Mars was two-three times as much as that for the Earth. The mass of water delivered to the Moon from beyond Jupiters orbit could be less than that for the Earth by a factor not more than 20.
Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at intermediate distances ranging from $sim$1 au to 2 au. Our study focusses on the formation and evolution of terrestrial-like planets and water delivery in the habitable zone (HZ) of the system. Our goal is also to analyse the long-term dynamical stability of the resulting systems. A semi-analytic model was used to define the properties of a protoplanetary disk that produces a Jupiter-mass planet around the snow line, which is located at $sim$2.7 au for a solar-mass star. Then, it was used to describe the evolution of embryos and planetesimals during the gaseous phase up to the formation of the Jupiter-mass planet, and we used the results as the initial conditions to carry out N-body simulations of planetary accretion. Our simulations produce three different classes of planets in the HZ: water worlds, with masses between 2.75 $M_{oplus}$ and 3.57 $M_{oplus}$ and water contents of 58% and 75% by mass, terrestrial-like planets, with masses ranging from 0.58 $M_{oplus}$ to 3.8 $M_{oplus}$ and water contents less than 1.2% by mass, and dry worlds, simulations of which show no water. A relevant result suggests the efficient coexistence in the HZ of a Jupiter-mass planet and a terrestrial-like planet with a percentage of water by mass comparable to the Earth. Moreover, our study indicates that these planetary systems are dynamically stable for at least 1 Gyr. Systems with a Jupiter-mass planet located at 1.5 au - 2 au around solar-type stars are of astrobiological interest. These systems are likely to harbour terrestrial-like planets in the HZ with a wide diversity of water contents.
The solar systems dynamical state can be explained by an orbital instability among the giant planets. A recent model has proposed that the giant planet instability happened during terrestrial planet formation. This scenario has been shown to match the inner solar system by stunting Mars growth and preventing planet formation in the asteroid belt. Here we present a large sample of new simulations of the Early Instability scenario. We use an N-body integration scheme that accounts for collisional fragmentation, and also perform a large set of control simulations that do not include an early giant planet instability. Since the total particle number decreases slower when collisional fragmentation is accounted for, the growing planets orbits are damped more strongly via dynamical friction and encounters with small bodies that dissipate angular momentum (eg: hit-and-run impacts). Compared with simulations without collisional fragmentation, our fully evolved systems provide better matches to the solar systems terrestrial planets in terms of their compact mass distribution and dynamically cold orbits. Collisional processes also tend to lengthen the dynamical accretion timescales of Earth analogs, and shorten those of Mars analogs. This yields systems with relative growth timescales more consistent with those inferred from isotopic dating. Accounting for fragmentation is thus supremely important for any successful evolutionary model of the inner solar system.
The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zones, which determine the compositions of Earth and Venus follow a particular pattern determined by Jupiter, while the feeding zones of Mars and Theia, the last giant impactor on Earth, appear to randomly sample the terrestrial disk. The late accreted mass samples the disk nearly evenly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا