No Arabic abstract
The solar systems dynamical state can be explained by an orbital instability among the giant planets. A recent model has proposed that the giant planet instability happened during terrestrial planet formation. This scenario has been shown to match the inner solar system by stunting Mars growth and preventing planet formation in the asteroid belt. Here we present a large sample of new simulations of the Early Instability scenario. We use an N-body integration scheme that accounts for collisional fragmentation, and also perform a large set of control simulations that do not include an early giant planet instability. Since the total particle number decreases slower when collisional fragmentation is accounted for, the growing planets orbits are damped more strongly via dynamical friction and encounters with small bodies that dissipate angular momentum (eg: hit-and-run impacts). Compared with simulations without collisional fragmentation, our fully evolved systems provide better matches to the solar systems terrestrial planets in terms of their compact mass distribution and dynamically cold orbits. Collisional processes also tend to lengthen the dynamical accretion timescales of Earth analogs, and shorten those of Mars analogs. This yields systems with relative growth timescales more consistent with those inferred from isotopic dating. Accounting for fragmentation is thus supremely important for any successful evolutionary model of the inner solar system.
The terrestrial planets are believed to have formed by violent collisions of tens of lunar- to Mars-size protoplanets at time t<200 Myr after the protoplanetary gas disk dispersal (t_0). The solar system giant planets rapidly formed during the protoplanetary disk stage and, after t_0, radially migrated by interacting with outer disk planetesimals. An early (t<100 Myr) dynamical instability is thought to have occurred with Jupiter having gravitational encounters with a planetary-size body, jumping inward by ~0.2-0.5 au, and landing on its current, mildly eccentric orbit. Here we investigate how the giant planet instability affected formation of the terrestrial planets. We study several instability cases that were previously shown to match many solar system constraints. We find that resonances with the giant planets help to remove solids available for accretion near ~1.5 au, thus stalling the growth of Mars. It does not matter, however, whether the giant planets are placed on their current orbits at t_0 or whether they realistically evolve in one of our instability models; the results are practically the same. The tight orbital spacing of Venus and Earth is difficult to reproduce in our simulations, including cases where bodies grow from a narrow annulus at 0.7-1 au, because protoplanets tend to radially spread during accretion. The best results are obtained in the narrow-annulus model when protoplanets emerging from the dispersing gas nebula are assumed to have (at least) the Mars mass. This suggests efficient accretion of the terrestrial protoplanets during the first ~10 Myr of the solar system.
In this Thesis I studied the formation of the four giant planets of the Solar System in the framework of the nucleated instability hypothesis. The model considers that solids and gas accretion are coupled in an interactive fashion, taking into account detailed constitutive physics for the envelope. The accretion rate of the core corresponds to the oligarchic growth regime. I also considered that accreted planetesimals follow a size distribution. One of the main results of this Thesis is that I was able to compute the formation of Jupiter, Saturn, Uranus and Neptune in less than 10 million years, which is considered to be the protoplanetary disk mean lifetime.
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. We review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.
In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into the terrestrial planet region, which may form debris disks with observable infrared excesses. Indeed, tens of warm debris disks around young solar-type stars have been observed. Here, we quantitatively estimate the total mass of ejected materials during the giant impact stages. We found that $sim$0.4 times the Earths mass is ejected in total throughout the giant impact stage. Ejected materials are ground down by collisional cascade until micron-sized grains are blown out by radiation pressure. The depletion timescale of these ejected materials is determined primarily by the mass of the largest body among them. We conducted high-resolution simulations of giant impacts to accurately obtain the mass of the largest ejected body. We then calculated the evolution of the debris disks produced by a series of giant impacts and depleted by collisional cascades to obtain the infrared excess evolution of the debris disks. We found that the infrared excess is almost always higher than the stellar infrared flux throughout the giant impact stage ($sim$100 Myr) and is sometimes $sim$10 times higher immediately after a giant impact. Therefore, giant impact stages would explain the infrared excess from most observed warm debris disks. The observed fraction of stars with warm debris disks indicates that the formation probability of our solar system-like terrestrial planets is approximately 10%.
Recent observations of the protoplanetary disc surrounding AB Aurigae have revealed the possible presence of two giant planets in the process of forming. The young measured age of $1-4$Myr for this system allows us to place strict time constraints on the formation histories of the observed planets. Hence we may be able to make a crucial distinction between formation through core accretion (CA) or the gravitational instability (GI), as CA formation timescales are typically Myrs whilst formation through GI will occur within the first $approx10^4-10^5$yrs of disc evolution. We focus our analysis on the $4-13$M$_{rm Jup}$ planet observed at $Rapprox30$AU. We find CA formation timescales for such a massive planet typically exceed the systems age. The planets high mass and wide orbit may instead be indicative of formation through GI. We use smoothed particle hydrodynamic simulations to determine the systems critical disc mass for fragmentation, finding $M_{rm d,crit}=0.3$M$_{odot}$. Viscous evolution models of the discs mass history indicate that it was likely massive enough to exceed $M_{rm d,crit}$ in the recent past, thus it is possible that a young AB Aurigae disc may have fragmented to form multiple giant gaseous protoplanets. Calculations of the Jeans mass in an AB Aurigae-like disc find that fragments may initially form with masses $1.6-13.3$M$_{rm Jup}$, consistent with the planets which have been observed. We therefore propose that the inferred planets in the disc surrounding AB Aurigae may be evidence of planet formation through GI.