Do you want to publish a course? Click here

Invariant Generation for Multi-Path Loops with Polynomial Assignments

328   0   0.0 ( 0 )
 Added by Andreas Humenberger
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Program analysis requires the generation of program properties expressing conditions to hold at intermediate program locations. When it comes to programs with loops, these properties are typically expressed as loop invariants. In this paper we study a class of multi-path program loops with numeric variables, in particular nested loops with conditionals, where assignments to program variables are polynomial expressions over program variables. We call this class of loops extended P-solvable and introduce an algorithm for generating all polynomial invariants of such loops. By an iterative procedure employing Grobner basis computation, our approach computes the polynomial ideal of the polynomial invariants of each program path and combines these ideals sequentially until a fixed point is reached. This fixed point represents the polynomial ideal of all polynomial invariants of the given extended P-solvable loop. We prove termination of our method and show that the maximal number of iterations for reaching the fixed point depends linearly on the number of program variables and the number of inner loops. In particular, for a loop with m program variables and r conditional branches we prove an upper bound of m*r iterations. We implemented our approach in the Aligator software package. Furthermore, we evaluated it on 18 programs with polynomial arithmetic and compared it to existing methods in invariant generation. The results show the efficiency of our approach.



rate research

Read More

We investigate the termination problem of a family of multi-path polynomial programs (MPPs), in which all assignments to program variables are polynomials, and test conditions of loops and conditional statements are polynomial equalities. We show that the set of non-terminating inputs (NTI) of such a program is algorithmically computable, thus leading to the decidability of its termination. To the best of our knowledge, the considered family of MPPs is hitherto the largest one for which termination is decidable. We present an explicit recursive function which is essentially Ackermannian, to compute the maximal length of ascending chains of polynomial ideals under a control function, and thereby obtain a complete answer to the questions raised by Seidenberg. This maximal length facilitates a precise complexity analysis of our algorithms for computing the NTI and deciding termination of MPPs. We extend our method to programs with polynomial guarded commands and show how an incomplete procedure for MPPs with inequality guards can be obtained. An application of our techniques to invariant generation of polynomial programs is further presented.
Multi-relational networks are used extensively to structure knowledge. Perhaps the most popular instance, due to the widespread adoption of the Semantic Web, is the Resource Description Framework (RDF). One of the primary purposes of a knowledge network is to reason; that is, to alter the topology of the network according to an algorithm that uses the existing topological structure as its input. There exist many such reasoning algorithms. With respect to the Semantic Web, the bivalent, monotonic reasoners of the RDF Schema (RDFS) and the Web Ontology Language (OWL) are the most prevalent. However, nothing prevents other forms of reasoning from existing in the Semantic Web. This article presents a non-bivalent, non-monotonic, evidential logic and reasoner that is an algebraic ring over a multi-relational network equipped with two binary operations that can be composed to execute various forms of inference. Given its multi-relational grounding, it is possible to use the presented evidential framework as another method for structuring knowledge and reasoning in the Semantic Web. The benefits of this framework are that it works with arbitrary, partial, and contradictory knowledge while, at the same time, it supports a tractable approximate reasoning process.
We present a scheme for translating logic programs, which may use aggregation and arithmetic, into algebraic expressions that denote bag relations over ground terms of the Herbrand universe. To evaluate queries against these relations, we develop an operational semantics based on term rewriting of the algebraic expressions. This approach can exploit arithmetic identities and recovers a range of useful strategies, including lazy strategies that defer work until it becomes possible or necessary.
In this work we relate the deterministic complexity of factoring polynomials (over finite fields) to certain combinatorial objects we call m-schemes. We extend the known conditional deterministic subexponential time polynomial factoring algorithm for finite fields to get an underlying m-scheme. We demonstrate how the properties of m-schemes relate to improvements in the deterministic complexity of factoring polynomials over finite fields assuming the generalized Riemann Hypothesis (GRH). In particular, we give the first deterministic polynomial time algorithm (assuming GRH) to find a nontrivial factor of a polynomial of prime degree n where (n-1) is a smooth number.
A rigid loop is a for-loop with a counter not accessible to the loop body or any other part of a program. Special instructions for rigid loops are introduced on top of the syntax of the program algebra PGA. Two different semantic projections are provided and proven equivalent. One of these is taken to have definitional status on the basis of two criteria: `normative semantic adequacy and `indicative algorithmic adequacy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا