Do you want to publish a course? Click here

On Termination of Polynomial Programs with Equality Conditions

98   0   0.0 ( 0 )
 Added by Mingshuai Chen
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We investigate the termination problem of a family of multi-path polynomial programs (MPPs), in which all assignments to program variables are polynomials, and test conditions of loops and conditional statements are polynomial equalities. We show that the set of non-terminating inputs (NTI) of such a program is algorithmically computable, thus leading to the decidability of its termination. To the best of our knowledge, the considered family of MPPs is hitherto the largest one for which termination is decidable. We present an explicit recursive function which is essentially Ackermannian, to compute the maximal length of ascending chains of polynomial ideals under a control function, and thereby obtain a complete answer to the questions raised by Seidenberg. This maximal length facilitates a precise complexity analysis of our algorithms for computing the NTI and deciding termination of MPPs. We extend our method to programs with polynomial guarded commands and show how an incomplete procedure for MPPs with inequality guards can be obtained. An application of our techniques to invariant generation of polynomial programs is further presented.



rate research

Read More

The termination behavior of probabilistic programs depends on the outcomes of random assignments. Almost sure termination (AST) is concerned with the question whether a program terminates with probability one on all possible inputs. Positive almost sure termination (PAST) focuses on termination in a finite expected number of steps. This paper presents a fully automated approach to the termination analysis of probabilistic while-programs whose guards and expressions are polynomial expressions. As proving (positive) AST is undecidable in general, existing proof rules typically provide sufficient conditions. These conditions mostly involve constraints on supermartingales. We consider four proof rules from the literature and extend these with generalizations of existing proof rules for (P)AST. We automate the resulting set of proof rules by effectively computing asymptotic bounds on polynomials over the program variables. These bounds are used to decide the sufficient conditions - including the constraints on supermartingales - of a proof rule. Our software tool Amber can thus check AST, PAST, as well as their negations for a large class of polynomial probabilistic programs, while carrying out the termination reasoning fully with polynomial witnesses. Experimental results show the merits of our generalized proof rules and demonstrate that Amber can handle probabilistic programs that are out of reach for other state-of-the-art tools.
147 - Raven Beutner , Luke Ong 2021
We study termination of higher-order probabilistic functional programs with recursion, stochastic conditioning and sampling from continuous distributions. Reasoning about the termination probability of programs with continuous distributions is hard, because the enumeration of terminating executions cannot provide any non-trivial bounds. We present a new operational semantics based on traces of intervals, which is sound and complete with respect to the standard sampling-based semantics, in which (countable) enumeration can provide arbitrarily tight lower bounds. Consequently we obtain the first proof that deciding almost-sure termination (AST) for programs with continuous distributions is $Pi^0_2$-complete. We also provide a compositional representation of our semantics in terms of an intersection type system. In the second part, we present a method of proving AST for non-affine programs, i.e., recursive programs that can, during the evaluation of the recursive body, make multiple recursive calls (of a first-order function) from distinct call sites. Unlike in a deterministic language, the number of recursion call sites has direct consequences on the termination probability. Our framework supports a proof system that can verify AST for programs that are well beyond the scope of existing methods. We have constructed prototype implementations of our method of computing lower bounds of termination probability, and AST verification.
135 - Jesus J. Domenech 2021
Programs with multiphase control-flow are programs where the execution passes through several (possibly implicit) phases. Proving termination of such programs (or inferring corresponding runtime bounds) is often challenging since it requires reasoning on these phases separately. In this paper we discuss techniques for proving termination of such programs, in particular: (1) using multiphase ranking functions, where we will discuss theoretical aspects of such ranking functions for several kinds of program representations; and (2) using control-flow refinement, in particular partial evaluation of Constrained Horn Clauses, to simplify the control-flow allowing, among other things, to prove termination with simpler ranking functions.
Program analysis requires the generation of program properties expressing conditions to hold at intermediate program locations. When it comes to programs with loops, these properties are typically expressed as loop invariants. In this paper we study a class of multi-path program loops with numeric variables, in particular nested loops with conditionals, where assignments to program variables are polynomial expressions over program variables. We call this class of loops extended P-solvable and introduce an algorithm for generating all polynomial invariants of such loops. By an iterative procedure employing Grobner basis computation, our approach computes the polynomial ideal of the polynomial invariants of each program path and combines these ideals sequentially until a fixed point is reached. This fixed point represents the polynomial ideal of all polynomial invariants of the given extended P-solvable loop. We prove termination of our method and show that the maximal number of iterations for reaching the fixed point depends linearly on the number of program variables and the number of inner loops. In particular, for a loop with m program variables and r conditional branches we prove an upper bound of m*r iterations. We implemented our approach in the Aligator software package. Furthermore, we evaluated it on 18 programs with polynomial arithmetic and compared it to existing methods in invariant generation. The results show the efficiency of our approach.
We present a scheme for translating logic programs, which may use aggregation and arithmetic, into algebraic expressions that denote bag relations over ground terms of the Herbrand universe. To evaluate queries against these relations, we develop an operational semantics based on term rewriting of the algebraic expressions. This approach can exploit arithmetic identities and recovers a range of useful strategies, including lazy strategies that defer work until it becomes possible or necessary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا