Do you want to publish a course? Click here

Schemes for Deterministic Polynomial Factoring

159   0   0.0 ( 0 )
 Added by Nitin Saxena
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

In this work we relate the deterministic complexity of factoring polynomials (over finite fields) to certain combinatorial objects we call m-schemes. We extend the known conditional deterministic subexponential time polynomial factoring algorithm for finite fields to get an underlying m-scheme. We demonstrate how the properties of m-schemes relate to improvements in the deterministic complexity of factoring polynomials over finite fields assuming the generalized Riemann Hypothesis (GRH). In particular, we give the first deterministic polynomial time algorithm (assuming GRH) to find a nontrivial factor of a polynomial of prime degree n where (n-1) is a smooth number.



rate research

Read More

In this paper we develop techniques that eliminate the need of the Generalized Riemann Hypothesis (GRH) from various (almost all) known results about deterministic polynomial factoring over finite fields. Our main result shows that given a polynomial f(x) of degree n over a finite field k, we can find in deterministic poly(n^{log n},log |k|) time either a nontrivial factor of f(x) or a nontrivial automorphism of k[x]/(f(x)) of order n. This main tool leads to various new GRH-free results, most striking of which are: (1) Given a noncommutative algebra over a finite field, we can find a zero divisor in deterministic subexponential time. (2) Given a positive integer r such that either 8|r or r has at least two distinct odd prime factors. There is a deterministic polynomial time algorithm to find a nontrivial factor of the r-th cyclotomic polynomial over a finite field. In this paper, following the seminal work of Lenstra (1991) on constructing isomorphisms between finite fields, we further generalize classical Galois theory constructs like cyclotomic extensions, Kummer extensions, Teichmuller subgroups, to the case of commutative semisimple algebras with automorphisms. These generalized constructs help eliminate the dependence on GRH.
225 - Raghu Meka , Avi Wigderson 2013
Finding cliques in random graphs and the closely related planted clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for t = Theta(sqrt(n)). Here we show that beating sqrt(n) would require substantially new algorithmic ideas, by proving a lower bound for the problem in the sum-of-squares (or Lasserre) hierarchy, the most powerful class of semi-definite programming algorithms we know of: r rounds of the sum-of-squares hierarchy can only solve the planted clique for t > sqrt(n)/(C log n)^(r^2). Previously, no nontrivial lower bounds were known. Our proof is formulated as a degree lower bound in the Positivstellensatz algebraic proof system, which is equivalent to the sum-of-squares hierarchy. The heart of our (average-case) lower bound is a proof that a certain random matrix derived from the input graph is (with high probability) positive semidefinite. Two ingredients play an important role in this proof. The first is the classical theory of association schemes, applied to the average and variance of that random matrix. The second is a new large deviation inequality for matrix-valued polynomials. Our new tail estimate seems to be of independent interest and may find other applications, as it generalizes both the estimates on real-valued polynomials and on sums of independent random matrices.
In this paper we study sums of powers of affine functions in (mostly) one variable. Although quite simple, this model is a generalization of two well-studied models: Waring decomposition and sparsest shift. For these three models there are natural extensions to several variables, but this paper is mostly focused on univariate polynomials. We present structural results which compare the expressive power of the three models; and we propose algorithms that find the smallest decomposition of f in the first model (sums of affine powers) for an input polynomial f given in dense representation. We also begin a study of the multivariate case. This work could be extended in several directions. In particular, just as for Sparsest Shift and Waring decomposition, one could consider extensions to supersparse polynomials and attempt a fuller study of the multi-variate case. We also point out that the basic univariate problem studied in the present paper is far from completely solved: our algorithms all rely on some assumptions for the exponents in an optimal decomposition, and some algorithms also rely on a distinctness assumption for the shifts. It would be very interesting to weaken these assumptions, or even to remove them entirely. Another related and poorly understood issue is that of the bit size of the constants appearing in an optimal decomposition: is it always polynomially related to the bit size of the input polynomial given in dense representation?
121 - Robert Spalek 2008
We reprove that the approximate degree of the OR function on n bits is Omega(sqrt(n)). We consider a linear program which is feasible if and only if there is an approximate polynomial for a given function, and apply the duality theory. The duality theory says that the primal program has no solution if and only if its dual has a solution. Therefore one can prove the nonexistence of an approximate polynomial by exhibiting a dual solution, coined the dual polynomial. We construct such a polynomial.
140 - Bernd R. Schuh 2017
Limits on the number of satisfying assignments for CNS instances with n variables and m clauses are derived from various inequalities. Some bounds can be calculated in polynomial time, sharper bounds demand information about the distribution of the number of unsatisfied clauses. Quite generally, the number of satisfying assignments involve variance and mean of this distribution. For large formulae, m>>1, bounds vary with 2**n/n, so they may be of use only for instances with a large number of satisfying assignments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا