Do you want to publish a course? Click here

The Network of U.S. Mutual Fund Investments: Diversification, Similarity and Fragility throughout the Global Financial Crisis

163   0   0.0 ( 0 )
 Added by Danilo Delpini
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Network theory proved recently to be useful in the quantification of many properties of financial systems. The analysis of the structure of investment portfolios is a major application since their eventual correlation and overlap impact the actual risk diversification by individual investors. We investigate the bipartite network of US mutual fund portfolios and their assets. We follow its evolution during the Global Financial Crisis and analyse the interplay between diversification, as understood in classical portfolio theory, and similarity of the investments of different funds. We show that, on average, portfolios have become more diversified and less similar during the crisis. However, we also find that large overlap is far more likely than expected from models of random allocation of investments. This indicates the existence of strong correlations between fund portfolio strategies. We introduce a simplified model of propagation of financial shocks, that we exploit to show that a systemic risk component origins from the similarity of portfolios. The network is still vulnerable after crisis because of this effect, despite the increase in the diversification of portfolios. Our results indicate that diversification may even increase systemic risk when funds diversify in the same way. Diversification and similarity can play antagonistic roles and the trade-off between the two should be taken into account to properly assess systemic risk.

rate research

Read More

We apply the knockoff procedure to factor selection in finance. By building fake but realistic factors, this procedure makes it possible to control the fraction of false discovery in a given set of factors. To show its versatility, we apply it to fund replication and to the inference of explanatory and prediction networks.
We test the hypothesis that interconnections across financial institutions can be explained by a diversification motive. This idea stems from the empirical evidence of the existence of long-term exposures that cannot be explained by a liquidity motive (maturity or currency mismatch). We model endogenous interconnections of heterogenous financial institutions facing regulatory constraints using a maximization of their expected utility. Both theoretical and simulation-based results are compared to a stylized genuine financial network. The diversification motive appears to plausibly explain interconnections among key players. Using our model, the impact of regulation on interconnections between banks -currently discussed at the Basel Committee on Banking Supervision- is analyzed.
Is the large influence that mutual funds assert on the U.S. financial system spread across many funds, or is it is concentrated in only a few? We argue that the dominant economic factor that determines this is market efficiency, which dictates that fund performance is size independent and fund growth is essentially random. The random process is characterized by entry, exit and growth. We present a new time-dependent solution for the standard equations used in the industrial organization literature and show that relaxation to the steady-state solution is extremely slow. Thus, even if these processes were stationary (which they are not), the steady-state solution, which is a very heavy-tailed power law, is not relevant. The distribution is instead well-approximated by a less heavy-tailed log-normal. We perform an empirical analysis of the growth of mutual funds, propose a new, more accurate size-dependent model, and show that it makes a good prediction of the empirically observed size distribution. While mutual funds are in many respects like other firms, market efficiency introduces effects that make their growth process distinctly different. Our work shows that a simple model based on market efficiency provides a good explanation of the concentration of assets, suggesting that other effects, such as transaction costs or the behavioral aspects of investor choice, play a smaller role.
The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following this methodological perspective we introduce here the Accounting Network, i.e. the network we can extract through vector similarities techniques from companies financial statements. We build the Accounting Network on a large database of worldwide banks in the period 2001-2013, covering the onset of the global financial crisis of mid-2007. After a careful data cleaning, we apply a quality check in the construction of the network, introducing a parameter (the Quality Ratio) capable of trading off the size of the sample (coverage) and the representativeness of the financial statements (accuracy). We compute several basic network statistics and check, with the Louvain community detection algorithm, for emerging communities of banks. Remarkably enough sensible regional aggregations show up with the Japanese and the US clusters dominating the community structure, although the presence of a geographically mixed community points to a gradual convergence of banks into similar supranational practices. Finally, a Principal Component Analysis procedure reveals the main economic components that influence communities heterogeneity. Even using the most basic vector similarity hypotheses on the composition of the financial statements, the signature of the financial crisis clearly arises across the years around 2008. We finally discuss how the Accounting Networks can be improved to reflect the best practices in the financial statement analysis.
During any unique crisis, panic sell-off leads to a massive stock market crash that may continue for more than a day, termed as mainshock. The effect of a mainshock in the form of aftershocks can be felt throughout the recovery phase of stock price. As the market remains in stress during recovery, any small perturbation leads to a relatively smaller aftershock. The duration of the recovery phase has been estimated using structural break analysis. We have carried out statistical analyses of the 1987 stock market crash, 2008 financial crisis and 2020 COVID-19 pandemic considering the actual crash-times of the mainshock and aftershocks. Earlier, such analyses were done considering an absolute one-day return, which cannot capture a crash properly. The results show that the mainshock and aftershock in the stock market follow the Gutenberg-Richter (GR) power law. Further, we obtained a higher $beta$ value for the COVID-19 crash compared to the financial-crisis-2008 from the GR law. This implies that the recovery of stock price during COVID-19 may be faster than the financial-crisis-2008. The result is consistent with the present recovery of the market from the COVID-19 pandemic. The analysis shows that the high magnitude aftershocks are rare, and low magnitude aftershocks are frequent during the recovery phase. The analysis also shows that the distribution $P(tau_i)$ follows the generalized Pareto distribution, i.e., $displaystyle~P(tau_i)proptofrac{1}{{1+lambda(q-1)tau_i}^{frac{1}{(q-1)}}}$, where $lambda$ and $q$ are constants and $tau_i$ is the inter-occurrence time. This analysis may help investors to restructure their portfolios during a market crash.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا