Do you want to publish a course? Click here

The Accounting Network: how financial institutions react to systemic crisis

79   0   0.0 ( 0 )
 Added by Michelangelo Puliga
 Publication date 2016
  fields Financial Physics
and research's language is English




Ask ChatGPT about the research

The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following this methodological perspective we introduce here the Accounting Network, i.e. the network we can extract through vector similarities techniques from companies financial statements. We build the Accounting Network on a large database of worldwide banks in the period 2001-2013, covering the onset of the global financial crisis of mid-2007. After a careful data cleaning, we apply a quality check in the construction of the network, introducing a parameter (the Quality Ratio) capable of trading off the size of the sample (coverage) and the representativeness of the financial statements (accuracy). We compute several basic network statistics and check, with the Louvain community detection algorithm, for emerging communities of banks. Remarkably enough sensible regional aggregations show up with the Japanese and the US clusters dominating the community structure, although the presence of a geographically mixed community points to a gradual convergence of banks into similar supranational practices. Finally, a Principal Component Analysis procedure reveals the main economic components that influence communities heterogeneity. Even using the most basic vector similarity hypotheses on the composition of the financial statements, the signature of the financial crisis clearly arises across the years around 2008. We finally discuss how the Accounting Networks can be improved to reflect the best practices in the financial statement analysis.



rate research

Read More

181 - T. R. Hurd 2019
This systemic risk paper introduces inhomogeneous random financial networks (IRFNs). Such models are intended to describe parts, or the entirety, of a highly heterogeneous network of banks and their interconnections, in the global financial system. Both the balance sheets and the stylized crisis behaviour of banks are ingredients of the network model. A systemic crisis is pictured as triggered by a shock to banks balance sheets, which then leads to the propagation of damaging shocks and the potential for amplification of the crisis, ending with the system in a cascade equilibrium. Under some conditions the model has ``locally tree-like independence (LTI), where a general percolation theoretic argument leads to an analytic fixed point equation describing the cascade equilibrium when the number of banks $N$ in the system is taken to infinity. This paper focusses on mathematical properties of the framework in the context of Eisenberg-Noe solvency cascades generalized to account for fractional bankruptcy charges. New results including a definition and proof of the ``LTI property of the Eisenberg-Noe solvency cascade mechanism lead to explicit $N=infty$ fixed point equations that arise under very general model specifications. The essential formulas are shown to be implementable via well-defined approximation schemes, but numerical exploration of some of the wide range of potential applications of the method is left for future work.
We consider a random financial network with a large number of agents. The agents connect through credit instruments borrowed from each other or through direct lending, and these create the liabilities. The settlement of the debts of various agents at the end of the contract period can be expressed as solutions of random fixed point equations. Our first step is to derive these solutions (asymptotically), using a recent result on random fixed point equations. We consider a large population in which agents adapt one of the two available strategies, risky or risk-free investments, with an aim to maximize their expected returns (or surplus). We aim to study the emerging strategies when different types of replicator dynamics capture inter-agent interactions. We theoretically reduced the analysis of the complex system to that of an appropriate ordinary differential equation (ODE). We proved that the equilibrium strategies converge almost surely to that of an attractor of the ODE. We also derived the conditions under which a mixed evolutionary stable strategy (ESS) emerges; in these scenarios the replicator dynamics converges to an equilibrium at which the expected returns of both the populations are equal. Further the average dynamics (choices based on large observation sample) always averts systemic risk events (events with large fraction of defaults). We verified through Monte Carlo simulations that the equilibrium suggested by the ODE method indeed represents the limit of the dynamics.
A growing body of studies on systemic risk in financial markets has emphasized the key importance of taking into consideration the complex interconnections among financial institutions. Much effort has been put in modeling the contagion dynamics of financial shocks, and to assess the resilience of specific financial markets - either using real network data, reconstruction techniques or simple toy networks. Here we address the more general problem of how shock propagation dynamics depends on the topological details of the underlying network. To this end we consider different realistic network topologies, all consistent with balance sheets information obtained from real data on financial institutions. In particular, we consider networks of varying density and with different block structures, and diversify as well in the details of the shock propagation dynamics. We confirm that the systemic risk properties of a financial network are extremely sensitive to its network features. Our results can aid in the design of regulatory policies to improve the robustness of financial markets.
The use of equilibrium models in economics springs from the desire for parsimonious models of economic phenomena that take human reasoning into account. This approach has been the cornerstone of modern economic theory. We explain why this is so, extolling the virtues of equilibrium theory; then we present a critique and describe why this approach is inherently limited, and why economics needs to move in new directions if it is to continue to make progress. We stress that this shouldnt be a question of dogma, but should be resolved empirically. There are situations where equilibrium models provide useful predictions and there are situations where they can never provide useful predictions. There are also many situations where the jury is still out, i.e., where so far they fail to provide a good description of the world, but where proper extensions might change this. Our goal is to convince the skeptics that equilibrium models can be useful, but also to make traditional economists more aware of the limitations of equilibrium models. We sketch some alternative approaches and discuss why they should play an important role in future research in economics.
Interbank markets are often characterised in terms of a core-periphery network structure, with a highly interconnected core of banks holding the market together, and a periphery of banks connected mostly to the core but not internally. This paradigm has recently been challenged for short time scales, where interbank markets seem better characterised by a bipartite structure with more core-periphery connections than inside the core. Using a novel core-periphery detection method on the eMID interbank market, we enrich this picture by showing that the network is actually characterised by multiple core-periphery pairs. Moreover, a transition from core-periphery to bipartite structures occurs by shortening the temporal scale of data aggregation. We further show how the global financial crisis transformed the market, in terms of composition, multiplicity and internal organisation of core-periphery pairs. By unveiling such a fine-grained organisation and transformation of the interbank market, our method can find important applications in the understanding of how distress can propagate over financial networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا