No Arabic abstract
During any unique crisis, panic sell-off leads to a massive stock market crash that may continue for more than a day, termed as mainshock. The effect of a mainshock in the form of aftershocks can be felt throughout the recovery phase of stock price. As the market remains in stress during recovery, any small perturbation leads to a relatively smaller aftershock. The duration of the recovery phase has been estimated using structural break analysis. We have carried out statistical analyses of the 1987 stock market crash, 2008 financial crisis and 2020 COVID-19 pandemic considering the actual crash-times of the mainshock and aftershocks. Earlier, such analyses were done considering an absolute one-day return, which cannot capture a crash properly. The results show that the mainshock and aftershock in the stock market follow the Gutenberg-Richter (GR) power law. Further, we obtained a higher $beta$ value for the COVID-19 crash compared to the financial-crisis-2008 from the GR law. This implies that the recovery of stock price during COVID-19 may be faster than the financial-crisis-2008. The result is consistent with the present recovery of the market from the COVID-19 pandemic. The analysis shows that the high magnitude aftershocks are rare, and low magnitude aftershocks are frequent during the recovery phase. The analysis also shows that the distribution $P(tau_i)$ follows the generalized Pareto distribution, i.e., $displaystyle~P(tau_i)proptofrac{1}{{1+lambda(q-1)tau_i}^{frac{1}{(q-1)}}}$, where $lambda$ and $q$ are constants and $tau_i$ is the inter-occurrence time. This analysis may help investors to restructure their portfolios during a market crash.
This study investigates the impact of the COVID-19 pandemic on the stock market crash risk in China. For this purpose, we first estimated the conditional skewness of the return distribution from a GARCH with skewness (GARCH-S) model as the proxy for the equity market crash risk of the Shanghai Stock Exchange. We then constructed a fear index for COVID-19 using data from the Baidu Index. Based on the findings, conditional skewness reacts negatively to daily growth in total confirmed cases, indicating that the pandemic increases stock market crash risk. Moreover, the fear sentiment exacerbates such risk, especially with regard to the impact of COVID-19. In other words, when the fear sentiment is high, the stock market crash risk is more strongly affected by the pandemic. Our evidence is robust for the number of daily deaths and global cases.
The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional potential $U$ under the influence of the variable noise intensity, depending on the particle position $x$. Based on the empirical data the approximate estimation of the Kramers-Moyal coefficients $D_{1,2}$ allow to predicate quite definitely the behavior of the potential introduced by $D_1 = - partial U /partial x$ and the volatility $sim sqrt{D_2}$. It has been shown that the presented model describes well enough the best known empirical facts relative to the large financial crash of October 1987.
This paper investigates the impact of economic policy uncertainty (EPU) on the crash risk of US stock market during the COVID-19 pandemic. To this end, we use the GARCH-S (GARCH with skewness) model to estimate daily skewness as a proxy for the stock market crash risk. The empirical results show the significantly negative correlation between EPU and stock market crash risk, indicating the aggravation of EPU increase the crash risk. Moreover, the negative correlation gets stronger after the global COVID-19 outbreak, which shows the crash risk of the US stock market will be more affected by EPU during the pandemic.
We investigate the statistical properties of the correlation matrix between individual stocks traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the portfolio weights in the Markowitz portfolio theory. We find that the distribution of the correlation matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The $beta_{473}$ coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT is approximately zero. Notably, we show that the entropy function $E(sigma)$ with the portfolio risk $sigma$ for the original and filtered correlation matrices are consistent with a power-law function, $E(sigma) sim sigma^{-gamma}$, with the exponent $gamma sim 2.92$ and those for Asian currency crisis decreases significantly.
This study examines the dynamic asset market linkages under the COVID-19 global pandemic based on market efficiency, in the sense of Fama (1970). Particularly, we estimate the joint degree of market efficiency by applying Ito et al.s (2014; 2017) Generalized Least Squares-based time-varying vector autoregression model. The empirical results show that (1) the joint degree of market efficiency changes widely over time, as shown in Los (2004) adaptive market hypothesis, (2) the COVID-19 pandemic may eliminate arbitrage and improve market efficiency through enhanced linkages between the asset markets; and (3) the market efficiency has continued to decline due to the Bitcoin bubble that emerged at the end of 2020.